FLOOD INSURANCE STUDY FEDERAL EMERGENCY MANAGEMENT AGENCY **VOLUME 1 OF 3** ## GUADALUPE COUNTY, TEXAS AND INCORPORATED AREAS | COMMUNITY NAME | COMMUNITY NUMBER | |---|------------------| | CIBOLO, CITY OF | 480267 | | GUADALUPE COUNTY,
UNINCORPORATED AREAS | 480266 | | LULING, CITY OF | 480096 | | MARION, CITY OF | 480268 | | NEW BERLIN, CITY OF | 481625 | | NEW BRAUNFELS, CITY OF | 485493 | | SANTA CLARA, CITY OF | 480013 | | SCHERTZ, CITY OF | 480269 | | SEGUIN, CITY OF | 485508 | | SELMA, CITY OF | 480046 | | STAPLES, CITY OF | 481529 | **PRELIMINARY**4/7/2017 ## **REVISED:** FLOOD INSURANCE STUDY NUMBER 48187CV001B Version Number 2.3.3.3 ## **TABLE OF CONTENTS** ## Volume 1 | | | <u>Page</u> | |--------------------------------|--|--| | 1.1
1.2
1.3
1.4 | | 1
1
2
2
5 | | SEC 2.1 2.2 2.3 2.4 2.5 | Floodplain Boundaries Floodways Base Flood Elevations Non-Encroachment Zones Coastal Flood Hazard Areas 2.5.1 Water Elevations and the Effects of Waves 2.5.2 Floodplain Boundaries and BFEs for Coastal Areas 2.5.3 Coastal High Hazard Areas 2.5.4 Limit of Moderate Wave Action | 15
15
23
24
24
24
24
25
25
25 | | 3.1
3.2 | TION 3.0 – INSURANCE APPLICATIONS National Flood Insurance Program Insurance Zones Coastal Barrier Resources System | 25 25 26 | | SEC 4.1 4.2 4.3 4.4 | · | 26
26
27
28
29 | | SEC 5.1 5.2 5.3 | Hydrologic Analyses Hydraulic Analyses Coastal Analyses 5.3.1 Total Stillwater Elevations 5.3.2 Waves 5.3.3 Coastal Erosion 5.3.4 Wave Hazard Analyses Alluvial Fan Analyses | 33
33
45
55
55
55
55
55 | | SEC 6.1 6.2 6.3 | TION 6.0 – MAPPING METHODS Vertical and Horizontal Control Base Map Floodplain and Floodway Delineation | 56 56 57 58 | ## **Volume 1, Continued** ## <u>Figures</u> | | <u>Page</u> | |--|---| | Figure 1: FIRM Index Figure 2: FIRM Notes to Users Figure 3: Map Legend for FIRM Figure 4: Floodway Schematic Figure 5: Wave Runup Transect Schematic Figure 6: Coastal Transect Schematic Figure 7: Frequency Discharge-Drainage Area Curves Figure 8: 1% Annual Chance Total Stillwater Elevations for Coastal Areas Figure 9: Transect Location Map | 7
8
11
23
24
25
44
55
56 | | | <u>Page</u> | | Table 1: Listing of NFIP Jurisdictions Table 2: Flooding Sources Included in this FIS Report Table 3: Flood Zone Designations by Community Table 4: Coastal Barrier Resources System Information Table 5: Basin Characteristics Table 6: Principal Flood Problems Table 7: Historic Flooding Elevations Table 8: Non-Levee Flood Protection Measures Table 9: Levees Table 10: Summary of Discharges Table 11: Summary of Non-Coastal Stillwater Elevations Table 12: Stream Gage Information used to Determine Discharges Table 13: Summary of Hydrologic and Hydraulic Analyses Table 14: Roughness Coefficients Table 15: Summary of Coastal Analyses Table 16: Tide Gage Analysis Specifics Table 17: Coastal Transect Parameters Table 18: Summary of Alluvial Fan Analyses Table 19: Results of Alluvial Fan Analyses Table 20: Countywide Vertical Datum Conversion Table 21: Stream-Based Vertical Datum Conversion Table 22: Base Map Sources Table 23: Summary of Topographic Elevation Data used in Mapping Table 24: Floodway Data | 2
17
26
26
27
28
28
28
33
35
45
45
45
55
56
56
56
57
57
58
58
60 | | Volume 2 | | | | <u>Page</u> | | SECTION 6.0 – MAPPING METHODS | | | 6.4 Coastal Flood Hazard Mapping | 93 | | 6.5 FIRM Revisions 6.5.1 Letters of Map Amendment | 93
93 | #### Volume 2, Continued | SECTION 6.0 – MAPPING METHODS, Continue | d | | |--|--------------------------|-------------| | 6.5 FIRM Revisions, Continued | | | | 6.5.2 Letters of Map Revision Based on F6.5.3 Letters of Map Revision | -ill | 93
94 | | 6.5.4 Physical Map Revisions | | 94
94 | | 6.5.5 Contracted Restudies | | 95 | | 6.5.6 Community Map History | | 95 | | SECTION 7.0 – CONTRACTED STUDIES AND C | COMMUNITY COORDINATION | 97 | | 7.1 Contracted Studies | | 97 | | 7.2 Community Meetings | | 102 | | SECTION 8.0 – ADDITIONAL INFORMATION | | 106 | | SECTION 9.0 – BIBLIOGRAPHY AND REFEREN | ICES | 108 | | <u>Tables</u> | | | | | | <u>Page</u> | | Table 25: Flood Hazard and Non-Encroachment D | ata for Selected Streams | 93 | | Table 26: Summary of Coastal Transect Mapping | Considerations | 93 | | Table 27: Incorporated Letters of Map Change | | 94 | | Table 28: Community Map History Table 29: Summary of Contracted Studies Include | d in this FIS Report | 96
98 | | Table 30: Community Meetings | d in this rio report | 103 | | Table 31: Map Repositories | | 106 | | Table 32: Additional Information | | 107 | | Table 33: Bibliography and References | | 109 | | <u>Exhibits</u> | | | | Profiles | Panel | | | INTENTIONALLY LEFT OUT | 01 P | | | Alligator Creek | 02-05 P | | | Cibolo Creek | 06-22 P | | 23-24 P 27-30 P 31-39 P 40-44 P 45-48 P 49-50 P 51-54 P 55-60 P 25 P 26 P Flood Cibolo-Dietz Creek Diversion Cibolo Creek Landfill Diversion Cibolo Creek Tributary No. 13 Cottonwood Creek North Cottonwood Creek South East Branch Dietz Creek Dietz Creek Elm Creek North Elm Creek South Geronimo Creek ## Volume 3 ## **Exhibits** | Flood Profiles | <u>Panel</u> | |-----------------------------------|--------------| | Guadalupe River | 62-77 P | | Interstate Highway-10 Diversion | 78 P | | Long Creek | 79-81 P | | San Marcos River | 82-90 P | | Santa Clara Creek | 91-97 P | | Santa Clara Creek Tributary No. 1 | 98-99 P | | Santa Clara Creek Tributary No. 2 | 100 P | | Town Creek | 101-105 P | | Town Creek Tributary No. 1 | 106 P | | Walnut Branch | 107-108 P | | York Creek | 109-117 P | ## **Published Separately** Flood Insurance Rate Map (FIRM) #### FLOOD INSURANCE STUDY REPORT **GUADALUPE COUNTY, TEXAS** #### **SECTION 1.0 – INTRODUCTION** #### 1.1 The National Flood Insurance Program The National Flood Insurance Program (NFIP) is a voluntary Federal program that enables property owners in participating communities to purchase insurance protection against losses from flooding. This insurance is designed to provide an alternative to disaster assistance to meet the escalating costs of repairing damage to buildings and their contents caused by floods. For decades, the national response to flood disasters was generally limited to constructing flood-control works such as dams, levees, sea-walls, and the like, and providing disaster relief to flood victims. This approach did not reduce losses nor did it discourage unwise development. In some instances, it may have actually encouraged additional development. To compound the problem, the public generally could not buy flood coverage from insurance companies, and building techniques to reduce flood damage were often overlooked. In the face of mounting flood losses and escalating costs of disaster relief to the general taxpayers, the U.S. Congress created the NFIP. The intent was to reduce future flood damage through community floodplain management ordinances, and provide protection for property owners against potential losses through an insurance mechanism that requires a premium to be paid for the protection. The U.S. Congress established the NFIP on August 1, 1968, with the passage of the National Flood Insurance Act of 1968. The NFIP was broadened and modified with the passage of the Flood Disaster Protection Act of 1973 and other legislative measures. It was further modified by the National Flood Insurance Reform Act of 1994 and the Flood Insurance Reform Act of 2004. The NFIP is administered by the Federal Emergency Management Agency (FEMA), which is a component of the Department of Homeland Security (DHS). Participation in the NFIP is based on an agreement between local communities and the Federal Government. If a community adopts and enforces floodplain management regulations to reduce future flood risks to new construction and substantially improved structures in Special Flood Hazard Areas (SFHAs), the Federal Government will make flood insurance available within the community as a financial protection against flood losses. The community's floodplain management regulations must meet or exceed criteria established in accordance with Title 44 Code of Federal Regulations (CFR) Part 60, *Criteria for Land Management and Use*. SFHAs
are delineated on the community's Flood Insurance Rate Maps (FIRMs). Under the NFIP, buildings that were built before the flood hazard was identified on the community's FIRMs are generally referred to as "Pre-FIRM" buildings. When the NFIP was created, the U.S. Congress recognized that insurance for Pre-FIRM buildings would be prohibitively expensive if the premiums were not subsidized by the Federal Government. Congress also recognized that most of these floodprone buildings were built by individuals who did not have sufficient knowledge of the flood hazard to make informed decisions. The NFIP requires that full actuarial rates reflecting the complete flood risk be charged on all buildings constructed or substantially improved on or after the effective date of the initial FIRM for the community or after December 31, 1974, whichever is later. These buildings are generally referred to as "Post-FIRM" buildings. #### 1.2 Purpose of this Flood Insurance Study Report This Flood Insurance Study (FIS) Report revises and updates information on the existence and severity of flood hazards for the study area. The studies described in this report developed flood hazard data that will be used to establish actuarial flood insurance rates and to assist communities in efforts to implement sound floodplain management. In some states or communities, floodplain management criteria or regulations may exist that are more restrictive than the minimum Federal requirements. Contact your State NFIP Coordinator to ensure that any higher State standards are included in the community's regulations. #### 1.3 Jurisdictions Included in the Flood Insurance Study Project This FIS Report covers the entire geographic area of Guadalupe County, Texas. The jurisdictions that are included in this project area, along with the Community Identification Number (CID) for each community and the United States Geological Survey (USGS) 8-digit Hydrologic Unit Code (HUC-8) sub-basins affecting each, are shown in Table 1. The FIRM panel numbers that affect each community are listed. If the flood hazard data for the community is not included in this FIS report, the location of that data is identified The location of flood hazard data for participating communities in multiple jurisdictions is also indicated in the table. **Table 1: Listing of NFIP Jurisdictions** | Community | CID | HUC-8
Sub-Basin(s) | Located on FIRM
Panel(s) | If Not
Included,
Location
of Flood
Hazard
Data | |-----------------|--------|-----------------------|---|---| | Cibolo, City of | 480267 | 12100202,
12100304 | 48187C0210F
48187C0230F
48187C0235F
48187C0240F
48187C0245F | Dutu | **Table 1: Listing of NFIP Jurisdictions, (continued)** | Table 1: Listing of NFIP Jurisdictions, (continued) | | | | | | | |---|--------|--------------|----------------------------|-----------|--|--| | | | | | If Not | | | | | | | | Included, | | | | | | | | Location | | | | | | 11110 0 | Leasted as FIDM | of Flood | | | | G | CID | HUC-8 | Located on FIRM | Hazard | | | | Community | CID | Sub-Basin(s) | Panel(s) | Data | | | | | | | 48187C0020F ² | | | | | | | | 48187C0035G | | | | | | | | 48187C0040F | | | | | | | | 48187C0045F | | | | | | | | 48187C0055G
48187C0065G | | | | | | | | 48187C0070G | | | | | | | | 48187C0090F | | | | | | | | 48187C0095F | | | | | | | | 48187C0110F | | | | | | | | 48187C0115F | | | | | | | | 48187C0120F | | | | | | | | 48187C0130F | | | | | | | | 48187C0135F | | | | | | | | 48187C0140F | | | | | | | | 48187C0145F | | | | | | | | 48187C0155F | | | | | | | | 48187C0160G | | | | | | | | 48187C0165F | | | | | | | | 48187C0170F | | | | | | | | 48187C0180G | | | | | | | | 48187C0190G
48187C0195G | | | | | Guadalupe County, | | 12100202, | 48187C0210F | | | | | Unincorporated | 480266 | 12100203, | 48187C0220F | | | | | Areas | .00_00 | 12100303, | 48187C0230F | | | | | | | 12100304 | 48187C0235F | | | | | | | | 48187C0240F | | | | | | | | 48187C0245F | | | | | | | | 48187C0255F | | | | | | | | 48187C0260F | | | | | | | | 48187C0265F | | | | | | | | 48187C0270F | | | | | | | | 48187C0280F
48187C0285F | | | | | | | | 48187C0290F | | | | | | | | 48187C0295F | | | | | | | | 48187C0305F | | | | | | | | 48187C0310F | | | | | | | | 48187C0315F | | | | | | | | 48187C0320F | | | | | | | | 48187C0330F | | | | | | | | 48187C0335F | | | | | | | | 48187C0340F | | | | | | | | 48187C0355F | | | | | | | | 48187C0360F | | | | | | | | 48187C0370F | | | | | | | | 48187C0380F | | | | | | | | 48187C0385F | | | | **Table 1: Listing of NFIP Jurisdictions, (continued)** | Table 1: Listing of NFIP Jurisdictions, (continued) | | | | | | | |---|--------|---|---|---|--|--| | | | HUC-8 | Located on FIRM | If Not
Included,
Location
of Flood
Hazard | | | | Community | CID | Sub-Basin(s) | Panel(s) | Data | | | | Guadalupe County,
Unincorporated
Areas | 480266 | 12100202,
12100203,
12100303,
12100304 | 48187C0390F
48187C0395F
48187C0405F
48187C0410F
48187C0415F
48187C0420F
48187C0430F
48187C0435F
48187C0440F
48187C0445F
48187C0440F | | | | | Luling, City of ¹ | 480096 | 12100203 | 48187C0195G | Caldwell
County
FIS, 2012 | | | | Marion, City of | 480268 | 12100304 | 48187C0235F | | | | | New Berlin, City of ¹ | 481625 | 12100304 | 48187C0265F
48187C0360F
48187C0380F
48187C0390F | Bexar
County
FIS, 2010 | | | | New Braunfels,
City of ¹ | 485493 | 12100202,
12100203,
12100304 | 48187C0090F
48187C0095F
48187C0105F ²
48187C0110F
48187C0115F
48187C0120F
48187C0130F
48187C0140F | Comal
County
FIS, 2009 | | | | Santa Clara, City of | 480013 | 12100202,
12100304 | 48187C0095F
48187C0230F
48187C0235F
48187C0255F | | | | | Schertz, City of ¹ | 480269 | 12100202,
12100304 | 48187C0090F
48187C0210F
48187C0220F
48187C0230F
48187C0240F | Bexar
County
FIS, 2010;
Comal
County
FIS, 2009 | | | **Table 1: Listing of NFIP Jurisdictions, (continued)** | Table I | Table 1: Listing of NFIP Jurisdictions, (Continued) | | | | | | | | |-----------------------------|---|-----------------------|---|---|--|--|--|--| | Community | CID | HUC-8
Sub-Basin(s) | Located on FIRM
Panel(s) | If Not
Included,
Location
of Flood
Hazard
Data | | | | | | Seguin, City of | 485508 | 12100202 | 48187C0140F
48187C0145F
48187C0260F
48187C0270F
48187C0280F
48187C0285F
48187C0290F
48187C0295F
48187C0305F | | | | | | | Selma, City of ¹ | 480046 | 12100304 | 48187C0210F | Bexar
County
FIS, 2010;
Comal
County
FIS, 2009 | | | | | | Staples, City of | 481529 | 12100203 | 48187C0065G
48187C0155F
48187C0160G | | | | | | ¹Community is mapped in multiple counties. This FIS only covers the portion within Guadalupe County #### 1.4 Considerations for using this Flood Insurance Study Report The NFIP encourages State and local governments to implement sound floodplain management programs. To assist in this endeavor, each FIS Report provides floodplain data, which may include a combination of the following: 10-, 4-, 2-, 1-, and 0.2-percent annual chance flood elevations (the 1% annual chance flood elevation is also referred to as the Base Flood Elevation (BFE)); delineations of the 1% annual chance and 0.2% annual chance floodplains; and 1% annual chance floodway. This information is presented on the FIRM and/or in many components of the FIS Report, including Flood Profiles, Floodway Data tables, Summary of Non-Coastal Stillwater Elevations tables, and Coastal Transect Parameters tables (not all components may be provided for a specific FIS). This section presents important considerations for using the information contained in this FIS Report and the FIRM, including changes in format and content. Figures 1, 2, and 3 present information that applies to using the FIRM with the FIS Report. Part or all of this FIS Report may be revised and republished at any time. In addition, part of this FIS Report may be revised by a Letter of Map Revision (LOMR), which does not involve republication or redistribution of the FIS Report. Refer to Section 6.5 of this FIS Report for information about the process to revise the FIS Report and/or FIRM. ²Panel Not Printed It is, therefore, the responsibility of the user to consult with community officials by contacting the community repository to obtain the most current FIS Report components. Communities participating in the NFIP have established repositories of flood hazard data for floodplain management and flood insurance purposes. Community map repository addresses are provided in Table 31, "Map Repositories," within this FIS Report. New FIS Reports are frequently developed for multiple communities, such as entire counties. A countywide FIS Report incorporates previous FIS Reports for individual communities and the unincorporated area of the county (if not jurisdictional) into a single document and supersedes those documents for the purposes of the NFIP. The initial Countywide FIS Report for Guadalupe County became effective on November 2, 2007. Refer to Table 28 for information about subsequent revisions to the FIRMs. FEMA has developed a *Guide to Flood Maps*
(FEMA 258) and online tutorials to assist users in accessing the information contained on the FIRM. These include how to read panels and step-by-step instructions to obtain specific information. To obtain this guide and other assistance in using the FIRM, visit the FEMA Web site at www.fema.gov/online-tutorials. The FIRM Index in Figure 1 shows the overall FIRM panel layout within Guadalupe County, and also displays the panel number and effective date for each FIRM panel in the county. Other information shown on the FIRM Index includes community boundaries and USGS HUC-8 codes. Figure 1: FIRM Panel Index ATTENTION: The corporate limits shown on this FIRM Index are based on the best information available at the time of publication. As such, they may be more current than those shown on FIRM panels issued before 11/2/2007 THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING DOCUMENTATION ARE ALSO AVAILABLE IN DIGITAL FORMAT AT HTTP://MSC.FEMA.GOV SEE FLOOD INSURANCE STUDY FOR ADDITIONAL INFORMATION *PANEL NOT PRINTED - NO SPECIAL FLOOD HAZARD AREAS **PANEL NOT PRINTED - AREA OUTSIDE COUNTY BOUNDARY #### NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP PANEL INDEX **GUADALUPE COUNTY, TEXAS** and Incorporated Areas PANELS PRINTED: 0035, 0040, 0045, 0055, 0065, 0070, 0090, 0095, 0110, 0115, 0120, 0130, 0135, 0140, 0145, 0155, 0160, 0165, 0170, 0180, 0190, 0195, 0210, 0220, 0230, 0235, 0240, 0245, 0255, 0260, 0265, 0270, 0280, 0285, 0290, 0295, 0305, 0310, 0315, 0320, 0330, 0335, 0340, 0355, 0360, 0370, 0380, 0385, 0390, 0395, 0405, 0410, 0415, 0420, 0430, 0435, 0440, 0445, 0455, 0480 Each FIRM panel may contain specific notes to the user that provide additional information regarding the flood hazard data shown on that map. However, the FIRM panel does not contain enough space to show all the notes that may be relevant in helping to better understand the information on the panel. Figure 2 contains the full list of these notes. Figure 2: FIRM Notes to Users ## **NOTES TO USERS** For information and questions about this map, available products associated with this FIRM including historic versions of this FIRM, how to order products, or the National Flood Insurance Program in general, please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Flood Map Service Center website at msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the website. Users may determine the current map date for each FIRM panel by visiting the FEMA Flood Map Service Center website or by calling the FEMA Map Information eXchange. Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Flood Map Service Center at the number listed above. For community and countywide map dates, refer to Table 28 in this FIS Report. To determine if flood insurance is available in the community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620. <u>PRELIMINARY FIS REPORT</u>: FEMA maintains information about map features, such as street locations and names, in or near designated flood hazard areas. Requests to revise information in or near designated flood hazard areas may be provided to FEMA during the community review period, at the final Consultation Coordination Officer's meeting, or during the statutory 90-day appeal period. Approved requests for changes will be shown on the final printed FIRM. The map is for use in administering the NFIP. It may not identify all areas subject to flooding, particularly from local drainage sources of small size. Consult the community map repository to find updated or additional flood hazard information. BASE FLOOD ELEVATIONS: For more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, consult the Flood Profiles and Floodway Data and/or Summary of Non-Coastal Stillwater Elevations tables within this FIS Report. Use the flood elevation data within the FIS Report in conjunction with the FIRM for construction and/or floodplain management. <u>FLOODWAY INFORMATION</u>: Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the FIS Report for this jurisdiction. #### Figure 2. FIRM Notes to Users FLOOD CONTROL STRUCTURE INFORMATION: Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 4.3 "Non-Levee Flood Protection Measures" of this FIS Report for information on flood control structures for this jurisdiction. <u>PROJECTION INFORMATION</u>: The projection used in the preparation of the map was Texas State Plane south central zone (FIPSZONE 4204). The horizontal datum was the North American Datum of 1983 NAD83, GRS1980 spheroid. Differences in datum, spheroid, projection or State Plane zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of the FIRM. <u>ELEVATION DATUM</u>: Flood elevations on the FIRM are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address: NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242 Local vertical monuments may have been used to create the map. To obtain current monument information, please contact the appropriate local community listed in Table 31 of this FIS Report. BASE MAP INFORMATION: Base map information shown on the FIRM was provided by TxDOT and U.S. Department of Commerce. For information about base maps, refer to Section 6.2 "Base Map" in this FIS Report. The map reflects more detailed and up-to-date stream channel configurations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables may reflect stream channel distances that differ from what is shown on the map. Corporate limits shown on the map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after the map was published, map users should contact appropriate community officials to verify current corporate limit locations. #### **NOTES FOR FIRM INDEX** <u>REVISIONS TO INDEX</u>: As new studies are performed and FIRM panels are updated within Guadalupe County, Texas, corresponding revisions to the FIRM Index will be incorporated within the FIS Report to reflect the effective dates of those panels. Please refer to Table 28 of this FIS Report to determine the most recent FIRM revision date for each community. The most recent FIRM panel effective date will correspond to the most recent index date. #### Figure 2. FIRM Notes to Users **ATTENTION:** The corporate limits shown on this FIRM Index are based on the best information available at the time of publication. As such, they may be more current than those shown on FIRM panels issued before 11/2/2007. #### SPECIAL NOTES FOR SPECIFIC FIRM PANELS This Notes to Users section was created specifically for Guadalupe County, Texas, effective Month xx, xxxx. <u>FLOOD RISK REPORT</u>: A Flood Risk Report (FRR) may be available for many of the flooding sources and communities referenced in this FIS Report. The FRR is provided to increase public awareness of flood risk by helping communities identify the areas within their jurisdictions that have the greatest risks. Although non-regulatory, the information provided within the FRR can assist communities in assessing and evaluating mitigation opportunities to reduce these risks. It can also be used by communities developing or updating flood risk mitigation plans. These plans allow communities to identify and evaluate opportunities to reduce potential loss of life and property. However, the FRR is not intended to be the final authoritative source of all flood risk data for a project area; rather, it should be used with other data sources to paint a comprehensive picture of flood risk. Each FIRM panel contains an abbreviated legend for the features shown on the maps. However, the FIRM panel does not contain enough space to show the legend for all map features. Figure 3 shows the full legend of all map features. Note that not all of these features may appear on the FIRM panels in Guadalupe County. Figure 3: Map Legend for FIRM SPECIAL FLOOD HAZARD AREAS: The 1% annual chance flood, also known as the base flood or 100-year flood, has a 1% chance of happening or being exceeded each year. Special Flood Hazard Areas are subject to flooding by the 1% annual chance flood. The Base Flood Elevation is the water surface elevation of the 1% annual chance flood. The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights. See note for specific types. If the floodway is too narrow to be shown, a note is shown.
Special Flood Hazard Areas subject to inundation by the 1% annual chance flood (Zones A, AE, AH, AO, AR, A99, V and VE) The flood insurance rate zone that corresponds to the 1% annual chance floodplains. No base (1% annual chance) flood elevations (BFEs) or depths are shown within this zone. Zone AE The flood insurance rate zone that corresponds to the 1% annual chance floodplains. Base flood elevations derived from the hydraulic analyses are shown within this zone. Zone AH The flood insurance rate zone that corresponds to the areas of 1% annual chance shallow flooding (usually areas of ponding) where average depths are between 1 and 3 feet. Whole-foot BFEs derived from the hydraulic analyses are shown at selected intervals within this zone. Zone AO The flood insurance rate zone that corresponds to the areas of 1% annual chance shallow flooding (usually sheet flow on sloping terrain) where average depths are between 1 and 3 feet. Average whole-foot depths derived from the hydraulic analyses are shown within this zone. Zone AR The flood insurance rate zone that corresponds to areas that were formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood. Zone A99 The flood insurance rate zone that corresponds to areas of the 1% annual chance floodplain that will be protected by a Federal flood protection system where construction has reached specified statutory milestones. No base flood elevations or flood depths are shown within this zone. Zone V The flood insurance rate zone that corresponds to the 1% annual chance coastal floodplains that have additional hazards associated with storm waves. Base flood elevations are not shown within this zone. Zone VE Zone VE is the flood insurance rate zone that corresponds to the 1% annual chance coastal floodplains that have additional hazards associated with storm waves. Base flood elevations derived from the coastal analyses are shown within this zone as static whole-foot elevations that apply throughout the zone. Figure 3: Map Legend for FIRM Figure 3: Map Legend for FIRM Figure 3: Map Legend for FIRM | ZONE AO
(DEPTH 2) | Zone designation with Depth | | | | | |--------------------------------------|---|--|--|--|--| | ZONE AO
(DEPTH 2)
(VEL 15 FPS) | Zone designation with Depth and Velocity | | | | | | BASE MAP FEATURES | | | | | | | Missouri Creek | River, Stream or Other Hydrographic Feature | | | | | | 234 | Interstate Highway | | | | | | 234 | U.S. Highway | | | | | | 234) | State Highway | | | | | | 234 | County Highway | | | | | | MAPLE LANE | Street, Road, Avenue Name, or Private Drive if shown on Flood Profile | | | | | | RAILROAD | Railroad | | | | | | | Horizontal Reference Grid Line | | | | | | _ | Horizontal Reference Grid Ticks | | | | | | + | Secondary Grid Crosshairs | | | | | | Land Grant | Name of Land Grant | | | | | | 7 | Section Number | | | | | | R. 43 W. T. 22 N. | Range, Township Number | | | | | | ⁴² 76 ^{000m} E | Horizontal Reference Grid Coordinates (UTM) | | | | | | 365000 FT | Horizontal Reference Grid Coordinates (State Plane) | | | | | | 80° 16' 52.5" | Corner Coordinates (Latitude, Longitude) | | | | | #### **SECTION 2.0 – FLOODPLAIN MANAGEMENT APPLICATIONS** #### 2.1 Floodplain Boundaries To provide a national standard without regional discrimination, the 1% annual chance (100-year) flood has been adopted by FEMA as the base flood for floodplain management purposes. The 0.2% annual chance (500-year) flood is employed to indicate additional areas of flood hazard in the community. Each flooding source included in the project scope has been studied and mapped using professional engineering and mapping methodologies that were agreed upon by FEMA and Guadalupe County as appropriate to the risk level. Flood risk is evaluated based on factors such as known flood hazards and projected impact on the built environment. Engineering analyses were performed for each studied flooding source to calculate its 1% annual chance flood elevations; elevations corresponding to other floods (e.g. 10-, 4-, 2-, 0.2-percent annual chance, etc.) may have also been computed for certain flooding sources. Engineering models and methods are described in detail in Section 5.0 of this FIS Report. The modeled elevations at cross sections were used to delineate the floodplain boundaries on the FIRM; between cross sections, the boundaries were interpolated using elevation data from various sources. More information on specific mapping methods is provided in Section 6.0 of this FIS Report. Depending on the accuracy of available topographic data (Table 23), study methodologies employed (Section 5.0), and flood risk, certain flooding sources may be mapped to show both the 1% and 0.2% annual chance floodplain boundaries, regulatory water surface elevations (BFEs), and/or a regulatory floodway. Similarly, other flooding sources may be mapped to show only the 1% annual chance floodplain boundary on the FIRM, without published water surface elevations. In cases where the 1% and 0.2% annual chance floodplain boundaries are close together, only the 1% annual chance floodplain boundary is shown on the FIRM. Table 2, "Map Legend for FIRM", describes the flood zones that are used on the FIRMs to account for the varying levels of flood risk that exist along flooding sources within the project area. Table 2 and Table 3 indicate the flood zone designations for each flooding source and each community within Guadalupe County, respectively. Table 2, "Flooding Sources Included in this FIS Report," lists each flooding source, including its study limits, affected communities, mapped zone on the FIRM, and the completion date of its engineering analysis from which the flood elevations on the FIRM and in the FIS Report were derived. Descriptions and dates for the latest hydrologic and hydraulic analyses of the flooding sources are shown in Table 13. Floodplain boundaries for these flooding sources are shown on the FIRM (published separately) using the symbology described in Figure 3. On the map, the 1% annual chance floodplain corresponds to the SFHAs. The 0.2% annual chance floodplain shows areas that, although out of the regulatory floodplain, are still subject to flood hazards. Small areas within the floodplain boundaries may lie above the flood elevations but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data. The procedures to remove these areas from the SFHA are described in Section 6.5 of this FIS Report. Table 2: Flooding Sources Included in this FIS Report | Flooding Source | Community | Downstream Limit | Upstream Limit | HUC-8 Sub-
Basin(s) | Length (mi) (streams or coastlines) | Floodway
(Y/N) | Zone
shown
on
FIRM | Date of Analysis | |---------------------------------|---|---|--|------------------------|-------------------------------------|-------------------|-----------------------------|------------------| | Alligator Creek | New Braunfels,
City of | Schwarslose Rd | Comal County | 12100202 | 1.63 |
Y | AE | 1983 | | | Guadalupe
County,
Unincorporated
Areas; New
Braunfels, City of | Confluence with
Geronimo Creek | Schwarslose Rd | 12100202 | 3.44 | Y | AE | 1979 | | Cibolo Creek | Cibolo, City of;
Guadalupe
County,
Unincorporated
Areas; Schertz,
City of; Selma,
City of | Interstate Highway
10 | Guadalupe County
boundary | 12100304 | 17.27 | Y | AE | 2005 | | Cibolo Creek | Guadalupe
County,
Unincorporated
Areas; New
Berlin, City of; | Guadalupe &
Wilson County | Interstate Highway 10 | 12100304 | 22.35 | Y | AE | 1993 | | Cibolo-Dietz Creek
Diversion | Schertz, City of | Confluence with
Deitz Creek | Confluence with Cibolo Creek | 12100304 | 1.45 | N | AE | 2005 | | Cibolo Creek Landfill Diversion | Schertz, City of | Convergence with Cibolo Creek | Divergence from Cibolo
Creek | 12100304 | 0.78 | Y | AE | 2005 | | Cibolo Creek Tributary
No.13 | Cibolo, City of | Confluence with
East Branch Dietz
Creek | Approximately 400 feet downstream of Kove Lane | 12100304 | 0.85 | N | AE | 2005 | Table 2: Flooding Sources Included in this FIS Report, (continued) | | | Table 2. I looding | Sources included in | tilis i io Neport, (| Continue | 1) | | | | |----------------------------|--|--|---|------------------------|----------------------|--|-------------------|---------------|------------------| | | | | | | Length (mi) (streams | Area
(mi ²)
(estuaries | | Zone
shown | | | Flooding Source | Community | Downstream Limit | Upstream Limit | HUC-8 Sub-
Basin(s) | or coastlines) | | Floodway
(Y/N) | | Date of Analysis | | Cottonwood Creek
North | Guadalupe
County,
Unincorporated
Areas | IL ANNIHANCA WITH | Approximately 800 feet upstream of County Road 245 | 12100203 | 9.38 | | Y | AE | 1979 | | Cottonwood Creek
South | Guadalupe
County,
Unincorporated
Areas | Confluence with
Guadalupe River | County Road 419 | 12100202 | 10.5 | | Y | AE | 1979 | | Dietz Creek | Selma, City of;
Schertz, City of | Confluence with
Cibolo Creek | Comal County | 12100304 | 5.5 | | Υ | AE | 2005 | | East Branch Dietz
Creek | Cibolo, City of;
Schertz, City of | Confluence with
Cibolo Creek | Approximately 0.12 miles upstream of Cibolo Valley
Road | 12100304 | 4.16 | | Υ | AE | 2005 | | Elm Creek North | Guadalupe
County,
Unincorporated
Areas | Confluence with
Cottonwood Creek
South | County Road 4118 | 12100202 | 2.79 | | Y | AE | 1979 | | Elm Creek South | Guadalupe
County,
Unincorporated
Areas | Wilson County | County Road 4128 | 12100304 | 8.65 | | Y | AE | 1979 | | Geronimo Creek | Guadalupe
County,
Unincorporated
Areas; New
Braunfels, City of;
Seguin, City of | Confluence with
Guadalupe River | County Road 130 | 12100202 | 15.8 | | Y | AE | 1979 | Table 2: Flooding Sources Included in this FIS Report, (continued) | Table 2: Flooding Sources included in this FIS Report, (continued) | | | | | | | | | | |--|--|---------------------------------|--|------------|----------------------------|---------------|----------|---------------|------------------| | | | | | | Length
(mi)
(streams | Area
(mi²) | | Zone
shown | | | | | | | HUC-8 Sub- | or | or | Floodway | on | | | Flooding Source | Community | Downstream Limit | Upstream Limit | Basin(s) | coastlines) | | (Y/N) | | Date of Analysis | | Guadalupe River | Guadalupe
County,
Unincorporated
Areas; New
Braunfels, City of;
Seguin, City of | Geronimo Creek | Dunlap Dam | 12100202 | 23.12 | | Y | AE | 2005 | | Guadalupe River | New Braunfels,
City of | Dunlap Dam | Comal County | 12100202 | 5.31 | | Y | AE | 2003 | | Guadalupe River | Guadalupe
County,
Unincorporated
Areas | Gonzales County | Geronimo Creek | 12100202 | 21.92 | | Y | AE | 1979 | | Interstate Highway-10
Diversion | Guadalupe
County,
Unincorporated
Areas | Confluence with
Cibolo Creek | Limit of Detailed Study
Divergence from Cibolo
Creek | 12100304 | 1.52 | | N | AE | 1993 | | Long Creek | Guadalupe
County,
Unincorporated
Areas | Confluence with
York Creek | Approximately 9850
feet upstream of FM
1979 | 12100203 | 6.08 | | Y | AE | 1979 | | San Marcos River | Guadalupe
County,
Unincorporated
Areas; Luling,
City of; Staples,
City of | Gonzales County
boundary | Hays County boundary | 12100203 | 41.93 | | Y | AE | 2016 | | Santa Clara Creek | Guadalupe
County,
Unincorporated
Areas; Santa
Clara, City of | Confluence with
Cibolo Creek | County Road 361 | 12100304 | 16.94 | | Y | AE | 1979 | Table 2: Flooding Sources Included in this FIS Report, (continued) | | | Table 2. Flooding | Sources included in | tilis Fis Report, (| Continued | <i>)</i> | | | | |-------------------------------------|--|--|--|------------------------|----------------------|-----------------------------|-------------------|---------------|------------------| | | | | | LILIO 0 0 0 h | Length (mi) (streams | Area
(mi²)
(estuaries | | Zone
shown | | | Flooding Source | Community | Downstream Limit | Upstream Limit | HUC-8 Sub-
Basin(s) | or coastlines) | or
ponding) | Floodway
(Y/N) | on
FIRM | Date of Analysis | | Santa Clara Creek
Tributary No.1 | Guadalupe
County,
Unincorporated
Areas; Santa
Clara, City of | Confluence with
Santa Clara Creek | County Road 367 | 12100304 | 6.71 | | Y | AE | 1979 | | Santa Clara Creek
Tributary No.2 | Guadalupe
County,
Unincorporated
Areas; Marion,
City of; Santa
Clara, City of | Confluence with
Santa Clara Creek
Tributary No.1 | County Road 354 | 12100304 | 0.72 | | Y | AE | 1979 | | Town Creek | Cibolo, City of;
Guadalupe
County,
Unincorporated
Areas | Approximately 2000 feet downstream of FM 78 | 2126 feet upstream of Dean Road | 12100304 | 4.77 | | Y | AE | 2005 | | Town Creek Tributary
No.1 | Cibolo, City of | Confluence with
Town Creek | 4114 feet upstream of
Confluence with Town
Creek | 12100304 | 0.78 | | Y | AE | 2005 | | Town Creek Tributary
No.1 | Cibolo, City of;
Guadalupe
County,
Unincorporated
Areas | Downstream of FM
1103 | Approximately 500
feet upstream of Short
Weil Rd | 12100304 | 3.27 | | N | Α | 2005 | | Town Creek Tributary
No.2 | Cibolo, City of;
Guadalupe
County,
Unincorporated
Areas; Santa
Clara, City of | Confluence with
Town Creek | 1016 feet upstream of
Short Weyel Road | 12100304 | 5.15 | | N | А | 2005 | Table 2: Flooding Sources Included in this FIS Report, (continued) | | | | | HUC-8 Sub- | Length
(mi)
(streams
or | Area
(mi²)
(estuaries
or | Floodway | Zone
shown
on | | |-----------------|---|--|---|------------|----------------------------------|-----------------------------------|----------|---------------------|------------------| | Flooding Source | Community | Downstream Limit | Upstream Limit | | coastlines) | | | | Date of Analysis | | | Cibolo, City of;
Guadalupe
County,
Unincorporated
Areas | Confluence with
Town Creek
Tributary No. 1 | 1340 feet upstream of
Wiedner Road | 12100304 | 0.8 | | N | Α | 2005 | | Walnut Branch | Guadaluple
County
Unincorporated
Areas; Seguin,
City of | Guadalune River | Approximately 2550 feet upstream of Interstate 10 | 12100202 | 3.84 | | Y | AE | 2005 | | York Creek | Guadalupe
County,
Unincorporated
Areas | Confluence with
San Marcos River | Hays County | 12100203 | 20.74 | | Y | AE | 1979 | Table 2: Flooding Sources Included in this FIS Report, (continued) | | | rabio zi i iocaiiig | oodi ces ilicidaed ili | uno i lo respont, (| | •, | | | | |--|----------------|---------------------|------------------------|---------------------|-------------|----------|----------|------|------------------| | | | | | HUC-8 Sub- | or | | Floodway | | | | Flooding Source | Community | Downstream Limit | Upstream Limit | Basin(s) | coastlines) | ponding) | (Y/N) | FIRM | Date of Analysis | | Branch, Long Creek
(Tributary of the
Guadalupe River), Mill
Creek, Nash Creek,
O'Neil Creek, Red | Unincorporated | * | * | * | 169.32 | | N | A | 2005 | #### 2.2 Floodways Encroachment on floodplains, such as structures and fill, reduces flood-carrying capacity, increases flood heights and velocities, and increases flood hazards in areas beyond the encroachment itself. One aspect of floodplain management involves balancing the economic gain from floodplain development against the resulting increase in flood hazard. For purposes of the NFIP, a floodway is used as a tool to assist local communities in balancing floodplain development against increasing flood hazard. With this approach, the area of the 1% annual chance floodplain on a river is divided into a floodway and a floodway fringe based on hydraulic modeling. The floodway is the channel of a stream, plus any adjacent floodplain areas, that must be kept free of encroachment in order to carry the 1% annual chance flood. The floodway fringe is the area between the floodway and the 1% annual chance floodplain boundaries where encroachment is permitted. The floodway must be wide enough so that the floodway fringe could be completely obstructed without increasing the water surface elevation of the 1% annual chance flood more than 1 foot at any point. Typical relationships between the floodway and the floodway fringe and their significance to floodplain development are shown in Figure 4. To participate in the NFIP, Federal regulations require communities to limit increases caused by encroachment to 1.0 foot, provided that hazardous velocities are not produced. The floodways in this project are presented to local agencies as minimum standards that can be adopted directly or that can be used as a basis for additional floodway projects. Figure 4: Floodway Schematic Floodway widths presented in this FIS Report and on the FIRM were computed at cross sections. Between cross sections, the floodway boundaries were interpolated. For certain stream segments, floodways were adjusted so that the amount of floodwaters conveyed on each side of the floodplain would be reduced equally. The results of the floodway computations have been tabulated for selected cross sections and are shown in Table 24, "Floodway Data." All floodways that were developed for this Flood Risk Project are shown on the FIRM using the symbology described in Figure 3. In cases where the floodway and 1% annual chance floodplain boundaries are either close together or collinear, only the floodway boundary has been shown on the FIRM. For information about the delineation of floodways on the FIRM, refer to Section 6.3. #### 2.3 Base Flood Elevations The hydraulic characteristics of flooding sources were analyzed to provide estimates of the elevations of floods of the selected recurrence intervals. The Base Flood Elevation (BFE) is the elevation of the 1% annual chance flood. These BFEs are most commonly rounded to the whole foot, as shown on the FIRM, but in certain circumstances or locations they may be rounded to 0.1 foot. Cross section lines shown on the FIRM may also be labeled with the BFE rounded to 0.1 foot. Whole-foot BFEs derived from engineering analyses that apply to coastal areas, areas of ponding, or other static areas with little elevation change may also be shown at selected intervals on the FIRM. Cross sections with BFEs shown on the FIRM correspond to the cross sections shown in the Floodway Data table and Flood Profiles in this FIS
Report. BFEs are primarily intended for flood insurance rating purposes. For construction and/or floodplain management purposes, users are cautioned to use the flood elevation data presented in this FIS Report in conjunction with the data shown on the FIRM. #### 2.4 Non-Encroachment Zones This section is not applicable to this Flood Risk Project. #### 2.5 Coastal Flood Hazard Areas This section is not applicable to this Flood Risk Project. #### 2.5.1 Water Elevations and the Effects of Waves This section is not applicable to this Flood Risk Project. **Figure 5: Wave Runup Transect Schematic** [Not Applicable to this Flood Risk Project] #### 2.5.2 Floodplain Boundaries and BFEs for Coastal Areas This section is not applicable to this Flood Risk Project. #### 2.5.3 Coastal High Hazard Areas This section is not applicable to this Flood Risk Project. #### **Figure 6: Coastal Transect Schematic** [Not Applicable to this Flood Risk Project] #### 2.5.4 Limit of Moderate Wave Action This section is not applicable to this Flood Risk Project. #### **SECTION 3.0 – INSURANCE APPLICATIONS** #### 3.1 National Flood Insurance Program Insurance Zones For flood insurance applications, the FIRM designates flood insurance rate zones as described in Figure 3, "Map Legend for FIRM." Flood insurance zone designations are assigned to flooding sources based on the results of the hydraulic or coastal analyses. Insurance agents use the zones shown on the FIRM and depths and base flood elevations in this FIS Report in conjunction with information on structures and their contents to assign premium rates for flood insurance policies. The 1% annual chance floodplain boundary corresponds to the boundary of the areas of special flood hazards (e.g. Zones A, AE, V, VE, etc.), and the 0.2% annual chance floodplain boundary corresponds to the boundary of areas of additional flood hazards. Table 3 lists the flood insurance zones in Guadalupe County. **Table 3: Flood Zone Designations by Community** | Community | Flood Zone(s) | |--|---------------| | Cibolo, City of | A, AE, X | | Guadalupe County, Unincorporated Areas | A, AE, X | | Luling, City of | AE, X | | Marion, City of | AE, X | | New Berlin, City of | A, AE, X | | New Braunfels, City of | A, AE, X | | Santa Clara, City of | A, AE, X | | Schertz, City of | A, AE, X | | Seguin, City of | A, AE, X | | Selma, City of | A, AE, X | | Staples, City of | A, AE, X | #### 3.2 Coastal Barrier Resources System This section is not applicable to this Flood Risk Project. **Table 4: Coastal Barrier Resources System Information** [Not Applicable to this Flood Risk Project] #### **SECTION 4.0 – AREA STUDIED** #### 4.1 Basin Description Table 5 contains a description of the characteristics of the HUC-8 sub-basins within which each community falls. The table includes the main flooding sources within each basin, a brief description of the basin, and its drainage area. **Table 5: Basin Characteristics** | HUC-8 Sub-
Basin Name | HUC-8
Sub-Basin
Number | Primary
Flooding
Source | Description of Affected Area | Drainage
Area
(square
miles) | |--------------------------|------------------------------|-------------------------------|---|---------------------------------------| | Cibolo | 12100304 | Cibolo Creek | Begins at the upstream limit of
Cibolo Creek, extends southeast,
affecting portions of Bandera,
Bexar, Comal, Guadalupe, Karnes,
Kendall and Wilson counties | 854 | | Lower San
Antonio | 12100303 | San Antonio
River | Begins at the confluence of the San Antonio River and Calaveras Creek, also meeting the confluences of Cibolo Creek and Ecleto Creek downstream, extending southeast. The watershed covers portions of Bexas, Calhoun, Dewitt, Goliad, Guadalupe, Karnes, Refugio, Victoria and Wilson counties | 1483 | | Middle
Guadalupe | 12100202 | Guadalupe
River | Begins at the upstream limit of the Guadalupe River, extends southeast, affecting one half of the eastern half of Caldwell County, as well as portions of Bastrop, Comal, DeWitt, Fayette, Gonzales, Guadalupe, Karnes and Wilson counties. | 2138 | | San Marcos 12100203 | | San Marcos
River | Begins at upstream limit of the Blanco River, extends southeast, affecting a majority of Caldwell County, as well as portions of Blanco, Comal, Gonzales, Guadalupe, Hays, Kendall and Travis counties. | 1359 | ## 4.2 Principal Flood Problems Table 6 contains a description of the principal flood problems that have been noted for Guadalupe County by flooding source. **Table 6: Principal Flood Problems** | Flooding Source | Description of Flood Problems | |------------------------|---| | San Marcos River | Severity of flooding along the San Marcos River is dictated by the location and intensity of rainfall in the Blanco and Upper San Marcos watersheds. Martindale and Luling have been historically impacted by flooding along the San Marcos River including most recently by the May 2015 flood event. However, the flood of record at the Luling USGS gage is the October 1998 event, which crested about 5 feet higher than the May 2015 event. Although the October 1998 event rainfall depth was lower than the May 2015 event, it was centered over the Upper San Marcos and lower Blanco watersheds, producing a higher flood peak at Luling. | | Other Major
streams | The valleys of the major streams within Guadalupe County have long suffered from periodic flood problems. Flooding occurs along the streams and tributaries, cuasing damage to rural and urban developments in the county. Most of the flood-producing storms occur during the spring and fall. Small overflows occur at least annually, causing minor damage. Larger floods, which caused damage to residential property, occur when the county receives 5.7 inches or more of rainfall in 24 hours which occurs approximately once in five years. | Table 7 contains information about historic flood elevations in the communities within Guadalupe County. **Table 7: Historic Flooding Elevations** | Flooding
Source | Location | Historic
Peak (Feet
NAVD88) | Event
Date | Approximate
Recurrence
Interval (years) | Source of Data | |---------------------|--|-----------------------------------|---------------|---|--| | San Marcos
River | FM 1977 Crystal
Clear WSC Staples
Well | 481.85 | May
2015 | 100 | Guadalupe
Blanco River
Authority High
Water Marks | #### 4.3 Non-Levee Flood Protection Measures Table 8 contains information about non-levee flood protection measures within Guadaluple County such as dams, jetties, and or dikes. Levees are addressed in Section 4.4 of this FIS Report. **Table 8: Non-Levee Flood Protection Measures** | Flooding Source | Structure
Name | Type of
Measure | Location | Description of
Measure | |-----------------|--------------------|--------------------|------------------------------|---------------------------| | Guadalupe River | Dunlap Dam | Dam | Downstream of Lake
Dunlap | | | Guadalupe River | Lake Placid
Dam | Dam | Downstream of Lake
Placid | | | Flooding Source | Structure
Name | Type of
Measure | Location | Description of
Measure | |-------------------|---------------------------------|--------------------|--|---------------------------| | Guadalupe River | McQueeny
Dam | Dam | Downstream of Lake
Mcqueeny | | | Guadalupe River | Nolte | Dam | Downstream of
Meadow Lake | | | Guadalupe River | Stacke Dam | Dam | Approximately 500 ft of Highway 123 | | | Long Branch | York Creek
SCS Dam
No.10 | Dam | Approximately 2600 feet upstream of Dreibrodt Road | | | San Marcos River | N/A | Dam | At station 190714
along San Marcos
River | | | York Tributary 33 | York Creek
SCS Dam No.
12 | Dam | Downstream of SCS
Site 12 Reservoir | | | York Tributary 37 | York Creek
SCS Dam No.
11 | Dam | Downstream of SCS
Site 11 Reservoir | | | York Tributary 51 | York Creek
SCS Dam No.
9 | Dam | Downstream of SCS
Site 9 Reservoir | | | York Tributary 55 | York Creek
SCS Dam No.
8 | Dam | Downstream of SCS
Site 8 Reservoir | | | York Tributary 61 | York Creek
SCS Dam No.
7 | Dam | Downstream of SCS
Site 7 Reservoir | | | York Tributary 67 | York Creek
SCS Dam No.
6 | Dam | Downstream of SCS
Site 6 Reservoir | | ## 4.4 Levees This section is not applicable to this Flood Risk Project. ## Table 9: Levees [Not Applicable to this Flood Risk Project] #### **SECTION 5.0 – ENGINEERING METHODS** For the flooding sources in the community, standard hydrologic and hydraulic study methods were used to determine the flood hazard data required for this study. Flood events of a magnitude that are expected to be equaled or exceeded at least once on the average during any 10-, 25-, 50-, 100-, or 500-year period (recurrence interval) have been
selected as having special significance for floodplain management and for flood insurance rates. These events, commonly termed the 10-, 25-, 50-, 100-, and 500-year floods, have a 10-, 4-, 2-, 1-, and 0.2% annual chance, respectively, of being equaled or exceeded during any year. Although the recurrence interval represents the long-term, average period between floods of a specific magnitude, rare floods could occur at short intervals or even within the same year. The risk of experiencing a rare flood increases when periods greater than 1 year are considered. For example, the risk of having a flood that equals or exceeds the 100-year flood (1-percent chance of annual exceedance) during the term of a 30-year mortgage is approximately 26 percent (about 3 in 10); for any 90-year period, the risk increases to approximately 60 percent (6 in 10). The analyses reported herein reflect flooding potentials based on conditions existing in the community at the time of completion of this study. Maps and flood elevations will be amended periodically to reflect future changes. In addition to these flood events, the "1-percent-plus", or "1%+", annual chance flood elevation has been modeled and included on the flood profile for certain flooding sources in this FIS Report. While not used for regulatory or insurance purposes, this flood event has been calculated to help illustrate the variability range that exists between the regulatory 1% annual chance flood elevation and a 1% annual chance elevation that has taken into account an additional amount of uncertainty in the flood discharges (thus, the 1% "plus"). For flooding sources whose discharges were estimated using regression equations, the 1%+ flood elevations are derived by taking the 1% annual chance flood discharges and increasing the modeled discharges by a percentage equal to the average predictive error for the regression equation. For flooding sources with gage- or rainfall-runoff-based discharge estimates, the upper 84-percent confidence limit of the discharges is used to compute the 1%+ flood elevations. The engineering analyses described here incorporate the results of previously issued Letters of Map Change (LOMCs) listed in Table 27, "Incorporated Letters of Map Change", which include Letters of Map Revision (LOMRs). For more information about LOMRs, refer to Section 6.5, "FIRM Revisions." #### 5.1 Hydrologic Analyses Hydrologic analyses were carried out to establish the peak elevation-frequency relationships for floods of the selected recurrence intervals for each flooding source studied. Hydrologic analyses are typically performed at the watershed level. Depending on factors such as watershed size and shape, land use and urbanization, and natural or man-made storage, various models or methodologies may be applied. A summary of the hydrologic methods applied to develop the discharges used in the hydraulic analyses for each stream is provided in Table 13. Greater detail (including assumptions, analysis, and results) is available in the archived project documentation. A summary of the discharges is provided in Table 10. Frequency Discharge-Drainage Area Curves used to develop the hydrologic models may also be shown in Figure 7 for selected flooding sources. A summary of stillwater elevations developed for non-coastal flooding sources is provided in Table 11. Stream gage information is provided in Table 12. Table 10: Summary of Discharges | | | | | | Peak Disc | harge (cfs) | | |-----------------|---|---------------------------------------|----------------------|------------------------|---------------------|---------------------|---------------------| | Flooding Source | Location | Drainage
Area
(Square
Miles) | 10% Annual
Chance | 4%
Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual Chance | | Alligator Creek | County Road at Cross
Section A | 22.8 | 8,344 | * | 12,199 | 14,353 | 20,779 | | Alligator Creek | At FM 758 | 19.4 | 7,745 | * | 11,323 | 13,322 | 19,286 | | Alligator Creek | County Road at Cross
Section G | 17.8 | 7,376 | * | 10,784 | 12,688 | 18,368 | | Alligator Creek | At New Braunfels
downstream
Corporate Limits | 16.3 | 2,119 | * | 7,668 | 9,047 | 12,249 | | Alligator Creek | At New Braunfels
upstream Corporate
Limit | 14.3 | 4,987 | * | 7,490 | 8,838 | 11,963 | | Cibolo Creek | Downstream of Dry
Hollow Creek | 540.1 | 29,380 ¹ | * | 46,300 ¹ | 55,680 ¹ | 78,340 ¹ | | Cibolo Creek | Approximately 3000 feet downstream of County Road 417 | 480.4 | 29,760 ¹ | * | 47,210 ¹ | 56,370 ¹ | 78,240 ¹ | | Cibolo Creek | Downstream of
Martinez Creek | 473.7 | 37,610 | * | 59,020 | 67,490 | 89,940 | | Cibolo Creek | Upstream of Martinez
Creek | 386.3 | 27,810 ¹ | * | 50,730 ¹ | 56,960 ¹ | 80,360 ¹ | | Cibolo Creek | Downstream of Santa
Clara Creek | 379.8 | 28,930 | * | 51,450 | 58,300 | 84,520 | | Cibolo Creek | Upstream of Santa
Clara Creek | 317.0 | 28,740 ¹ | * | 51,060 ¹ | 58,020 ¹ | 84,040 ¹ | **Table 10: Summary of Discharges, (continued)** | | | | . Summary or i | 21001141.90 | | harge (cfs) | | |-----------------|---|---------------------------------------|----------------------|------------------------|---------------------|---------------------|----------------------| | Flooding Source | Location | Drainage
Area
(Square
Miles) | 10% Annual
Chance | 4%
Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual Chance | | Cibolo Creek | Downstream of
Interstate Highway 10 | 307.4 | 33,550 ¹ | * | 61,640 ¹ | 70,970 ¹ | 107,340 ¹ | | Cibolo Creek | 180 feet E-NE of end of Schmidt-Craft Lane | 305.44 | 33,797 | * | 81,444 | 99,565 | 140,967 | | Cibolo Creek | 3500 feet downstream of Weir Road | 303.31 | 33,941 | * | 81,763 | 99,891 | 141,170 | | Cibolo Creek | Below Stream CC-27 | 302.17 | 33,977 | * | 81,893 | 100,009 | 141,326 | | Cibolo Creek | Above Stream CC-27 | 300.01 | 33,977 | * | 81,881 | 99,986 | 141,297 | | Cibolo Creek | 246 feet downstream
of confluence with
Dietz Creek | 297.34 | 33,980 | * | 81,850 | 99,926 | 141,228 | | Cibolo Creek | 235 feet upstream
Pecan Grove Drive | * | 34,253 | * | 74,816 | 83,554 | 99,095 | | Cibolo Creek | 1200 feet downstream of FM 78 | * | 34,253 | * | 69,696 | 74,844 ² | 81,545 | | Cibolo Creek | Aviation Boulevard | * | 34,253 | * | 74,816 | 83,554 ³ | 99,095 | | Cibolo Creek | 448 feet S-SE of intersection of FM 1518 and Commercial Place | 282.55 | 34,253 | * | 81,826 | 99,724 | 140,985 | | Cibolo Creek | 981 feet SE of end of
Laguna Hills | 280.66 | 34,393 | * | 82,047 | 99,903 | 141,087 | | Cibolo Creek | 166 feet upstream of IH 35 N Access Road | 272.54 | 34,329 | * | 81,637 | 99,423 | 140,562 | Table 10: Summary of Discharges, (continued) | | | | . Odminary or i | <u> </u> | Peak Disc | harge (cfs) | | |------------------------------------|--|---------------------------------------|----------------------|------------------------|---------------------|---------------------|--------------------| | Flooding Source | Location | Drainage
Area
(Square
Miles) | 10% Annual
Chance | 4%
Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual Chance | | Cibolo Creek | 731 feet upstream of
Guadalupe County
Boundary | 271.61 | 34,404 | * | 81,696 | 99,469 | 140,722 | | Cibolo Creek
Landfill Diversion | | * | * | * | * | 8,700 | * | | Cibolo Creek
Tributary No. 13 | 600 feet downstream
of Deer Creek
Boulevard | 0.627 | 1,106 | * | 1,728 | 2,041 | 2,753 | | Cibolo Creek
Tributary No. 13 | Green Valley Road | 0.083 | 185 | * | 280 | 329 | 446 | | Cibolo-Dietz
Creek Diversion | | * | * | * | * | 16,600 | * | | Cottonwood
Creek North | At FM 1339 | 25.0 | 4,835 | * | 8,882 | 11,143 | 17,888 | | Cottonwood
Creek North | County Road at Cross
Section G | 21.9 | 4,398 | * | 8,274 | 10,440 | 16,901 | | Cottonwood
Creek North | At FM 1979 | 14.8 | 2,994 | * | 6,147 | 7,908 | 13,162 | | Cottonwood
Creek North | At FM 1978 | 12.7 | 2,173 | * | 5,070 | 6,688 | 11,516 | | Cottonwood
Creek South | At State Route 123 | 27.4 | 8,800 | * | 13,000 | 15,360 | 22,400 | | Cottonwood
Creek South | County Road at Cross
Section D | 26.1 | 8,536 | * | 12,610 | 14,899 | 21,128 | | Cottonwood
Creek South | County Road at Cross
Section E | 6.0 | 4,114 | * | 6,078 | 7,181 | 10,472 | **Table 10: Summary of Discharges, (continued)** | | | Tubic 10 | . Summary of i | <u> </u> | Peak Discharge (cfs) | | | | | | | | |----------------------------|--|---------------------------------------|----------------------|------------------------|----------------------|---------------------|--------------------|--|--|--|--|--| | Flooding Source | Location | Drainage
Area
(Square
Miles) | 10% Annual
Chance | 4%
Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual Chance | | | | | | | Cottonwood
Creek South | County Road at Cross
Section G | 3.1 | 2,913 | * | 4,303 | 5,084 | 7,414 | | | | | | | Dietz Creek | Confluence with
Cibolo Creek | 12.12 | 8,423 | * | 14,458 | 17,589 | 25,541 | | | | | | | Dietz Creek | 300 feet upstream of FM 78 | 11.93 | 8,231 | * | 14,169 | 17,225 | 25,127 | | | | | | | Dietz Creek | Confluence of East
Branch Dietz Creek | 11.18 | 7,817 | * | 13,223 | 16,046 | 23,851 | | | | | | | Dietz Creek | 2300 feet downstream
of SH 3009 | 7.49 | 5,582 | * | 9,428 | 11,361 | 16,371 | | | | | | | Dietz Creek | Elbel Road | 6.94 | 5,221 | * | 8,826 | 10,664 | 15,246 | | | | | | | Dietz Creek | Live Oak Road | 6.05 | 4,563 | * | 7,671 | 9,287 | 13,314 | | | | | | | Dietz Creek | Schertz Parkway | 5.48 | 4,396 | * | 7,321 | 8,856 | 12,559 | | | | | | | Dietz Creek | Maske Road | 5.06 | 4,137 | * |
6,806 | 8,228 | 11,638 | | | | | | | Dietz Creek | 2850 feet downstream of Wiederstein Road | 3.83 | 3,433 | * | 5,383 | 6,437 | 8,918 | | | | | | | Dietz Creek | Confluence of Cibolo
Tributary 16 | 2.51 | 2,647 | * | 4,058 | 4,736 | 6,373 | | | | | | | Dietz Creek | 1000 feet upstream of IH-35 | 2.10 | 2,242 | * | 3,441 | 4,044 | 5,479 | | | | | | | Dietz Creek | Lookout Road | 1.59 | 1,747 | * | 2,660 | 3,122 | 4,201 | | | | | | | East Branch
Dietz Creek | Confluence with Dietz
Creek | 3.69 | 5,160 | * | 8,187 | 9,724 | 13,145 | | | | | | **Table 10: Summary of Discharges, (continued)** | | | Tubio To | Peak Discharge (cfs) | | | | | | | | | |----------------------------|---|---------------------------------------|----------------------|------------------------|---------------------|---------------------|--------------------|--|--|--|--| | | | | | | r can Disc | naige (GS) | | | | | | | Flooding Source | Location | Drainage
Area
(Square
Miles) | 10% Annual
Chance | 4%
Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual Chance | | | | | | East Branch
Dietz Creek | 260 feet downstream
of Deer Creek
Boulevard | 3.03 | 4,385 | * | 6,929 | 8,250 | 11,241 | | | | | | East Branch
Dietz Creek | Deer Creek Boulevard | 2.4 | 3,499 | * | 5,527 | 6,583 | 9,024 | | | | | | East Branch
Dietz Creek | 1100 feet downstream of Green Valley Road | 1.62 | 2,546 | * | 3,983 | 4,711 | 6,493 | | | | | | East Branch
Dietz Creek | 850 feet upstream of
Crest Oak Road | 0.86 | 1,595 | * | 2,500 | 2,958 | 4,060 | | | | | | Elm Creek North | At FM 467 | 3.2 | 3,089 | * | 4,516 | 5,313 | 7,692 | | | | | | Elm Creek North | County Road at Cross
Section C | 1.9 | 2,406 | * | 3,518 | 4,139 | 5,993 | | | | | | Elm Creek South | County Road at Cross
Section A | 53.9 | 12,100 | * | 17,875 | 21,120 | 30,800 | | | | | | Elm Creek South | County Road at Cross
Section B | 42.8 | 10,912 | * | 16,120 | 19,046 | 27,776 | | | | | | Elm Creek South | At FM 467 | 20.6 | 7,568 | * | 11,180 | 13,210 | 19,624 | | | | | | Elm Creek South | County Road at Cross
Section F | 9.2 | 5,060 | * | 7,475 | 8,832 | 12,880 | | | | | | Geronimo Creek | At US Route 90 | 61.2 | 13,738 | * | 20,085 | 23,631 | 34,210 | | | | | | Geronimo Creek | At FM 20 | 55.7 | 13,000 | * | 19,007 | 22,363 | 32,374 | | | | | | Geronimo Creek | County Road at Cross
Section H | 39.5 | 11,064 | * | 16,176 | 19,032 | 27,552 | | | | | | Geronimo Creek | At State Route 123 | 30.9 | 9,681 | * | 14,154 | 16,653 | 24,108 | | | | | **Table 10: Summary of Discharges, (continued)** | | | Table 10 | Summary of I | Jisonar go | | harge (cfs) | | |-----------------|---|---------------------------------------|----------------------|------------------------|---------------------|---------------------|--------------------| | Flooding Source | Location | Drainage
Area
(Square
Miles) | 10% Annual
Chance | 4%
Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual Chance | | Geronimo Creek | County Road at Cross
Section N | 4.1 | 3,527 | * | 5,156 | 6,066 | 8,782 | | Geronimo Creek | County Road at Cross
Section P | 3.2 | 3,089 | * | 4,523 | 5,313 | 7,692 | | Guadalupe River | 470 feet downstream of confluence with Krams Creek | 367.2 | 73,000 | * | 126,900 | 151,300 | 219,200 | | Guadalupe River | 790 feet downstream
of confluence with
Cottonwood Creek
South | 359.94 | 72,800 | * | 126,400 | 150,700 | 218,400 | | Guadalupe River | 3425 feet upstream of
SH 123 Bypass (cross
section V) | 326.4 | 70,900 | * | 122,800 | 146,300 | 212,700 | | Guadalupe River | 115 feet downstream
of confluence with
Walnut Branch (cross
section AG) | 322.36 | 70,700 | * | 122,500 | 145,900 | 212,100 | | Guadalupe River | 7240 feet upstream of
Stockdale Highway
(cross section AN) | 309.79 | 70,300 | * | 121,500 | 144,600 | 210,300 | | Guadalupe River | 35 feet downstream of confluence with Deadman Creek | 305.69 | 70,200 | * | 121,000 | 144,000 | 209,400 | | Guadalupe River | 2765 feet upstream of
Interstate Highway 10
Westbound (cross
section BE) | 286.08 | 68,400 | * | 118,000 | 140,400 | 204,700 | **Table 10: Summary of Discharges, (continued)** | | Table 10: Summary of Discharges, (continued) | | | | | | | | | | | |---------------------------------------|--|---------------------------------------|----------------------|------------------------|---------------------|---------------------|--------------------|--|--|--|--| | | | | | | Peak Disc | harge (cfs) | | | | | | | Flooding Source | Location | Drainage
Area
(Square
Miles) | 10% Annual
Chance | 4%
Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual Chance | | | | | | Guadalupe River | 620 feet downstream
of confluence with
Youngs Creek | 279.81 | 67,900 | * | 117,200 | 139,400 | 203,500 | | | | | | Guadalupe River | 6909 feet downstream
of confluence with
Long Creek (cross
section CB) | 260.47 | 66,700 | * | 115,300 | 136,900 | 200,300 | | | | | | Guadalupe River | 760 feet downstream
of confluence with
Long Creek (cross
section CF) | 250.99 | 65,300 | * | 113,100 | 134,200 | 196,900 | | | | | | Guadalupe River | 6848 feet downstream
of Dunlap Dam (cross
section CN) | 238.73 | 61,900 | * | 106,700 | 126,400 | 187,200 | | | | | | Guadalupe River | 46 feet upstream of
Dunlap Dam | 233.46 | 62,000 | * | 105,800 | 125200 | 185,700 | | | | | | Guadalupe River | 2928 feet upstream of
Dunlap Dam | 231.53 | 61,800 | * | 105,400 | 124,700 | 185,100 | | | | | | Guadalupe River | 275 feet downstream of Kingsbury St | 295.84 | 69,700 | * | 120,000 | 142,800 | 207,600 | | | | | | Interstate
Highway-10
Diversion | | * | 0 | * | 2,308 | 6,142 | 29,050 | | | | | | Long Creek | At Dam No. 10 | 6.6 | 628 | * | 2,705 | 3,865 | 7,326 | | | | | | Long Creek | At FM 1979 | 5.5 | 4,103 | * | 5,999 | 7,058 | 10,217 | | | | | Table 10: Summary of Discharges, (continued) | | | | . Gammary Or I | <u>g</u> - | | harge (cfs) | | |---|---|---------------------------------------|----------------------|------------------------|---------------------|---------------------|--------------------| | Flooding Source | Location | Drainage
Area
(Square
Miles) | 10% Annual
Chance | 4%
Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual Chance | | San Marcos
River | At the Luling gage | 838.9 | 47,410 | * | 103,870 | 142,430 | 253,130 | | San Marcos
River | Just downstream of confluence with York Creek | 756.6 | 48,960 | * | 105,510 | 144,110 | 257,130 | | San Marcos
River | Parallel to Martindale Diversion | N/A | 42,850 | * | 77,230 | 95,220 | 124,430 | | San Marcos
River | Just downstream of
Purgatory Creek | 86.9 | 7,400 | * | 10,980 | 15,420 | 45,460 | | Santa Clara
Creek | County Road at Cross
Section A | 62.1 | 13,830 | * | 20,220 | 23,790 | 34,440 | | Santa Clara
Creek | County Road at Cross
Section C | 53.9 | 12,816 | * | 18,737 | 22,045 | 31,914 | | Santa Clara
Creek | County Road at Cross
Section E | 23.1 | 8,482 | * | 12,402 | 14,591 | 21,123 | | Santa Clara
Creek | At FM 465 | 17.4 | 7,330 | * | 10,717 | 12,609 | 18,253 | | Santa Clara
Creek | At FM 78 | 14.9 | 6,731 | * | 9,840 | 11,578 | 16,761 | | Santa Clara
Creek | County Road at Cross
Section K | 12.0 | 6,085 | * | 8,897 | 10,468 | 15,154 | | Santa Clara
Creek | County Road at Cross
Section M | 2.7 | 2,858 | * | 4,179 | 4,917 | 7,118 | | Santa Clara
Creek Tributary
No. 1 | At FM 78 | 4.1 | 3,527 | * | 5,156 | 6,066 | 8,782 | Table 10: Summary of Discharges, (continued) | | | | . Guillinary or i | -10011a1 go | | harge (cfs) | | |---|---|---------------------------------------|----------------------|------------------------|---------------------|---------------------|--------------------| | Flooding Source | Location | Drainage
Area
(Square
Miles) | 10% Annual
Chance | 4%
Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual Chance | | Santa Clara
Creek Tributary
No. 1 | County Road at Cross
Section D | 2.8 | 2,968 | * | 4,327 | 5,091 | 7,370 | | Santa Clara
Creek Tributary
No. 2 | County Road at Cross
Section A | 1.9 | 2,397 | * | 3,505 | 4,124 | 5,970 | | Town Creek | Downstream of Schaefer Road | 8.39 | 6,200 | * | 11,659 | 14,147 | 21,992 | | Town Creek | Downstream of FM 78 | 8.14 | 6,203 | * | 11,700 | 14,096 | 21,975 | | Town Creek | Confluence of Town
Creek Tributary No. 1 | 7.44 | 7,185 | * | 12,386 | 15,079 | 21,511 | | Town Creek | 2500 feet upstream of
SH Spur 539 | 4.04 | 3,669 | * | 6,333 | 7,731 | 11,117 | | Town Creek | Downstream of FM 1103 | 3.65 | 3,632 | * | 6,177 | 7,497 | 10,598 | | Town Creek | Downstream of Borgfeld Road | 3.45 | 3,629 | * | 6,123 | 7,417 | 10,396 | | Town Creek | 1860 feet upstream of
Wiedner Road | 2.54 | 3,078 | * | 5,039 | 6,031 | 8,332 | | Town Creek | 775 feet upstream of Green Valley Road | 1.62 | 2,257 | * | 3,612 | 4,323 | 5,983 | | Town Creek | 750 feet upstream of
Dean Road | 0.42 | 762 | * | 1,189 | 1,405 | 1,905 | | Town Creek
Tributary No. 1 | Confluence with Town
Creek | 3.39 | 3,844 | * | 6,725 | 8,144 | 11,460 | **Table 10: Summary of Discharges, (continued)** | | | Table 10 | Summary of L | 213011ai ge | <u> </u> | harge (cfs) | | |-------------------------------|---|---------------------------------------|----------------------|------------------------
---------------------|---------------------|--------------------| | Flooding Source | Location | Drainage
Area
(Square
Miles) | 10% Annual
Chance | 4%
Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual Chance | | Town Creek
Tributary No. 1 | Weil Road | 3.16 | 3,883 | * | 6,592 | 7,965 | 11,105 | | Town Creek
Tributary No. 1 | Confluence of Town
Tributary 4 | 2.48 | 3,727 | * | 6,087 | 7,287 | 10,091 | | Town Creek
Tributary No. 1 | 2225 feet downstream
of Brite Road | 1.15 | 1,683 | * | 2,801 | 3,391 | 4,715 | | Town Creek
Tributary No. 1 | 1850 feet upstream of Brite Road | 0.79 | 1,653 | * | 2,566 | 3,028 | 4,134 | | Walnut Branch | 50 feet upstream of
Klein Street | 7.22 | 3,350 | * | 4,550 | 5,700 | 9,100 | | Walnut Branch | 85 feet upstream of
Guadalupe Street | 6.87 | 3,250 | * | 4,350 | 5,600 | 9,000 | | Walnut Branch | 200 feet upstream of
Saunders Street | 6.49 | 3,150 | * | 4,200 | 5,600 | 9,000 | | Walnut Branch | 925 feet downstream of Vaughan Avenue | 6.26 | 3,100 | * | 4,200 | 5,500 | 9,000 | | Walnut Branch | 60 feet upstream of Kingsbury Street | 5.95 | 2,950 | * | 4,150 | 5,400 | 8,800 | | Walnut Branch | 1140 feet downstream
of Interstate Highway
10 eastbound | 5.59 | 2,900 | * | 4,050 | 5,400 | 8,700 | **Table 10: Summary of Discharges, (continued)** | | | | | Peak Discharge (cfs) | | | | | | | |-----------------|---|---------------------------------------|----------------------|------------------------|---------------------|---------------------|--------------------|--|--|--| | Flooding Source | Location | Drainage
Area
(Square
Miles) | 10% Annual
Chance | 4%
Annual
Chance | 2% Annual
Chance | 1% Annual
Chance | 0.2% Annual Chance | | | | | Walnut Branch | 120 feet upstream of
Interstate Highway 10
westbound | 4.61 | 2,800 | * | 4,400 | 5,300 | 7,600 | | | | | Walnut Branch | 2595 feet upstream of
Interstate Highway 10
westbound | 3.86 | 2,500 | * | 4,000 | 4,750 | 6,800 | | | | | York Creek | At FM 20 | 126.0 | 10,455 | * | 19,614 | 24,731 | 39,996 | | | | | York Creek | At FM 1339 | 77.5 | 7,281 | * | 14,416 | 18,402 | 30,295 | | | | | York Creek | At State Route 123 | 63.3 | 6,300 | * | 12,690 | 16,020 | 26,910 | | | | ¹Decrease in discharge due to the effects of Muskingum-Cunge routing and/or channel losses ²8,700 cfs diversion between UP Railroad and landfill ³16,000 cfs Cibolo-Dietz diversion upstream UP Railroad ⁴Discharges decreases due to storage routing effects ^{*}Not calculated for this Flood Risk Project Figure 7: Frequency Discharge-Drainage Area Curves Table 11: Summary of Non-Coastal Stillwater Elevations [Not Applicable to this Flood Risk Project] **Table 12: Stream Gage Information used to Determine Discharges** | | | Agency | | Drainage | Period o | f Record | |-----------------|--------------------|---------------------------|--|---------------------------|------------|----------| | Flooding Source | Gage
Identifier | that
Maintains
Gage | Site Name | Area
(Square
Miles) | From | То | | Cibolo Creek | 08185000 | USGS | Cibolo Creek
at Selma, TX | 274 | 04/01/1946 | * | | Comal River | 08169000 | USGS | Comal River
at New
Braunfels, TX | 130 | 12/19/1927 | * | | Guadalupe River | 08168500 | USGS | Guadalupe
River above
Comal River
at New
Braunfels, TX | 1,518 | 12/19/1927 | * | | Guadalupe River | 08169500 | USGS | Guadalupe
River at New
Braunfels, TX | 1,652 | 01/27/1915 | * | | San Marcos | 08172000 | USGS | San Marcos
River at
Luling, TX | 838 | 04/18/1939 | * | ^{*}Gage is currently active at time of FIS creation ### 5.2 Hydraulic Analyses Analyses of the hydraulic characteristics of flooding from the sources studied were carried out to provide estimates of the elevations of floods of the selected recurrence intervals. Base flood elevations on the FIRM represent the elevations shown on the Flood Profiles and in the Floodway Data tables in the FIS Report. Rounded whole-foot elevations may be shown on the FIRM in coastal areas, areas of ponding, and other areas with static base flood elevations. These whole-foot elevations may not exactly reflect the elevations derived from the hydraulic analyses. Flood elevations shown on the FIRM are primarily intended for flood insurance rating purposes. For construction and/or floodplain management purposes, users are cautioned to use the flood elevation data presented in this FIS Report in conjunction with the data shown on the FIRM. The hydraulic analyses for this FIS were based on unobstructed flow. The flood elevations shown on the profiles are thus considered valid only if hydraulic structures remain unobstructed, operate properly, and do not fail. For streams for which hydraulic analyses were based on cross sections, locations of selected cross sections are shown on the Flood Profiles (Exhibit 1). For stream segments for which a floodway was computed (Section 6.3), selected cross sections are also listed in Table 24, "Floodway Data." A summary of the methods used in hydraulic analyses performed for this project is provided in Table 13. Roughness coefficients are provided in Table 14. Roughness coefficients are values representing the frictional resistance water experiences when passing overland or through a channel. They are used in the calculations to determine water surface elevations. Greater detail (including assumptions, analysis, and results) is available in the archived project documentation. Table 13: Summary of Hydrologic and Hydraulic Analyses | Flooding Source | Study Limits Downstream Limit | Study Limits
Upstream Limit | Hydrologic
Model or
Method Used | Hydraulic
Model or
Method Used | Date
Analyses
Completed | Flood
Zone on
FIRM | Special Considerations | |---------------------------------------|---|---------------------------------|--|--------------------------------------|-------------------------------|--------------------------|--| | Alligator Creek | Schwarslose Rd | Comal County | Log-Pearson
Type III
Frequency
Analysis | HEC-2 | August
1983 | AE w/
Floodway | | | Alligator Creek | Confluence with
Geronimo Creek | Schwarslose Rd | Peak Discharge values were determined using the modified discharge per inch of runoff curves | SCS-WSP-2 | 03/01/1979 | AE w/
Floodway | Curves from the NRCS "Work Plan for Watershed Protection and Flood Prevention, York Creek Watershed" | | Cibolo Creek | Upstream of
Interstate
Highway 10 | Guadalupe
County boundary | HEC-HMS 2.2.2 | HEC-RAS
3.1.2 | September
2005 | AE w/
Floodway | Based on preliminary models prepared by the USACE Fort Worth District, in support of an ongoing Planning Study for the San Antonio River Authority, the Guadalupe Blanco River Authority and the San Antonio Water System. The USACE study was not complete at the time of the the 2007 FIS report preparation and the hydrology modeling is subject to revision. The USACE modeling represents the best available data for this reach at this time. | | Cibolo Creek | Wilson County | Interstate
Highway 10 | HEC-1 | HEC-2 | January
1993 | AE w/
Floodway | | | Cibolo-Dietz
Creek Diversion | Confluence with
Deitz Creek | Confluence with
Cibolo Creek | HEC-HMS 2.2.2 | HEC-RAS
3.1.2 | September
2005 | AE | | | Cibolo Creek
Landfill
Diversion | Convergence
with Cibolo Creek | Divergence from
Cibolo Creek | HEC-HMS 2.2.2 | HEC-RAS
3.1.2 | September
2005 | AE w/
Floodway | | | Flooding Source | Study Limits Downstream Limit | Study Limits Upstream Limit | Hydrologic
Model or
Method Used | Hydraulic
Model or
Method Used | Date
Analyses
Completed | Flood
Zone on
FIRM | Special Considerations | |------------------------------------|---|---|---|--------------------------------------|-------------------------------|--------------------------|--| | Cibolo Creek
Tributary
No.13 | Confluence with
East Branch Dietz
Creek | Approximately
400 feet
downstream of
Kove Lane | HEC-HMS 2.2.2 | HEC-RAS
3.1.2 | September 2005 | AE w/
Floodway | | | Cottonwood
Creek North | Confluence with
York Creek | Approximately
800 feet
upstream of
County Road 245 | Peak Discharge
values were
determined
using the
modified
discharge per
inch of runoff
curves | SCS-WSP-2 | 03/01/1979 | AE w/
Floodway | Curves from the NRCS "Work Plan for
Watershed Protection and Flood Prevention,
York Creek Watershed" | | Cottonwood
Creek South | Confluence with
Guadalupe River | County Road 419 | Peak Discharge values were determined using the modified discharge per inch of runoff curves | SCS-WSP-2 | 03/01/1979 | AE w/
Floodway | Curves from the NRCS "Work Plan for
Watershed Protection and Flood Prevention,
York Creek Watershed" | | Dietz Creek | Confluence with
Cibolo Creek | Comal County | HEC-HMS 2.2.2
| HEC-RAS
3.1.2 | September
2005 | AE w/
Floodway | | | East Branch
Dietz Creek | Confluence with
Cibolo Creek | Approximately 0.12 miles upstream of Cibolo Valley Road | HEC-HMS 2.2.2 | HEC-RAS
3.1.2 | September
2005 | AE w/
Floodway | | | | Table 13. Summary of Hydrologic and Hydraulic Analyses, (continued) | | | | | | | | | | |--------------------|---|--------------------------------|--|--------------------------------------|-------------------------------|--------------------------|--|--|--|--| | Flooding Source | Study Limits Downstream Limit | Study Limits
Upstream Limit | Hydrologic
Model or
Method Used | Hydraulic
Model or
Method Used | Date
Analyses
Completed | Flood
Zone on
FIRM | Special Considerations | | | | | Elm Creek
North | Confluence with
Cottonwood
Creek South | County Road
4118 | Peak Discharge values were determined using the modified discharge per inch of runoff curves | SCS-WSP-2 | 03/01/1979 | AE w/
Floodway | Curves from the NRCS "Work Plan for Watershed Protection and Flood Prevention, York Creek Watershed" | | | | | Elm Creek
South | Wilson County | County Road
4128 | Peak Discharge values were determined using the modified discharge per inch of runoff curves | SCS-WSP-2 | 03/01/1979 | AE w/
Floodway | Curves from the NRCS "Work Plan for Watershed Protection and Flood Prevention, York Creek Watershed" | | | | | Geronimo
Creek | Confluence with
Guadalupe River | County Road 130 | Peak Discharge values were determined using the modified discharge per inch of runoff curves | SCS-WSP-2 | 03/01/1979 | AE w/
Floodway | Curves from the NRCS "Work Plan for Watershed Protection and Flood Prevention, York Creek Watershed" | | | | | Guadalupe
River | Geronimo Creek | Dunlap Dam | HEC-HMS 2.2.2 | HEC-RAS
3.1.2 | September
2005 | AE w/
Floodway | | | | | | Guadalupe
River | Dunlap Dam | Comal County | New Braunfels
Drainage and
Erosion Control
Design Manual | HEC-RAS
3.0.1 | 08/22/2003 | AE w/
Floodway | The analytical approach in the City manual generally follows NRCS Procedures, which is an umbrella term to cover a wide range of related procedures. Details of the NRCS procedures can be found in the publication Technical Release Number 55 (TR-55) and in Section 4 of the National Engineering Handbook. | | | | | | rable to: Califficacy of Hydrologic and Hydraulic Allaryses, (Continued) | | | | | | | | | |---------------------------------------|--|---|---|--------------------------------------|-------------------------------|--------------------------|--|--|--| | Flooding Source | Study Limits Downstream Limit | Study Limits
Upstream Limit | Hydrologic
Model or
Method Used | Hydraulic
Model or
Method Used | Date
Analyses
Completed | Flood
Zone on
FIRM | Special Considerations | | | | Guadalupe
River | Gonzales County | Geronimo Creek | Log-Pearson
Type III
Frequency
Analysis | SCS-WSP-2 | 03/01/1979 | AE w/
Floodway | | | | | Interstate
Highway-10
Diversion | Confluence with
Cibolo Creek | Limit of Detailed
Study Divergence
from Cibolo
Creek | Peak Discharge values were determined using the modified discharge per inch of runoff curves | HEC-2 | January
1993 | AE | | | | | Long Creek | Confluence with
York Creek | Approximately
9850 feet
upstream of FM
1979 | Peak Discharge
values were
determined
using the
modified
discharge per
inch of runoff
curves | SCS-WSP-2 | 03/01/1979 | AE w/
Floodway | Curves from the NRCS "Work Plan for
Watershed Protection and Flood Prevention,
York Creek Watershed" | | | | San Marcos
River | Gonzales County boundary | Hays County
boundary | HEC-HMS 4.1 | HEC-RAS 4.1 | 8/31/2016 | AE w/
Floodway | | | | | Santa Clara
Creek | Confluence with
Cibolo Creek | County Road 361 | Peak Discharge values were determined using the modified discharge per inch of runoff curves | SCS-WSP-2 | 03/01/1979 | AE w/
Floodway | Curves from the NRCS "Work Plan for Watershed Protection and Flood Prevention, York Creek Watershed" | | | | | Table 13. Sulfillary of Hydrologic and Hydraulic Alfalyses, (continued) | | | | | | | | | | |---|---|---|--|--------------------------------------|-------------------------------|--------------------------|---|--|--|--| | Flooding Source | Study Limits Downstream Limit | Study Limits
Upstream Limit | Hydrologic
Model or
Method Used | Hydraulic
Model or
Method Used | Date
Analyses
Completed | Flood
Zone on
FIRM | Special Considerations | | | | | Santa Clara
Creek Tributary
No. 1 | Confluence with
Santa Clara Creek | County Road 367 | Peak Discharge values were determined using the modified discharge per inch of runoff curves | SCS-WSP-2 | 03/01/1979 | AE w/
Floodway | Curves from the NRCS "Work Plan for Watershed Protection and Flood Prevention, York Creek Watershed" | | | | | Santa Clara
Creek Tributary
No. 2 | Confluence with
Santa Clara Creek
Tributary No.1 | County Road 354 | Log-Pearson
Type III
Frequency
Analysis | SCS-WSP-2 | 03/01/1979 | AE w/
Floodway | | | | | | Town Creek | Approximately
2000 feet
downstream of
FM 78 | 2126 feet
upstream of
Dean Road | HEC-HMS 2.2.2 | HEC-RAS
3.1.2 | September
2005 | AE w/
Floodway | | | | | | Town Creek | Approximately 4.2 miles upstream of confluence with Santa Clara Creek | Approximately
2000 feet
downstream of
FM 78 | HEC-HMS 2.2.2 | HEC-RAS
3.1.2 | September
2005 | А | Culvert and bridge survey data was generated by combining a top of road survey point with field sketches and structures measurements. | | | | | Town Creek
Tributary No. 1 | Confluence with
Town Creek | 4114 feet
upstream of
Confluence with
Town Creek | HEC-HMS 2.2.2 | HEC-RAS
3.1.2 | September
2005 | AE w/
Floodway | | | | | | Town Creek
Tributary No. 1 | Downstream of
FM 1103 | Approximately
500 feet
upstream of
Short Weil Rd | HEC-HMS 2.2.2 | HEC-RAS
3.1.2 | September
2005 | А | Culvert and bridge survey data was generated by combining a top of road survey point with field sketches and structures measurements. | | | | | Flooding Source | Study Limits Downstream Limit | Study Limits
Upstream Limit | Hydrologic
Model or
Method Used | Hydraulic
Model or
Method Used | Date
Analyses
Completed | Flood
Zone on
FIRM | Special Considerations | |-------------------------------|--|--|---|--------------------------------------|-------------------------------|--------------------------|---| | Town Creek
Tributary No. 2 | Confluence with
Town Creek | 1016 feet
upstream of
Short Weyel
Road | HEC-HMS 2.2.2 | HEC-RAS
3.1.2 | September
2005 | А | Culvert and bridge survey data was generated by combining a top of road survey point with field sketches and structures measurements. | | Town Creek
Tributary No. 4 | Confluence with
Town Creek
Tributary No. 1 | 1340 feet
upstream of
Wiedner Road | HEC-HMS 2.2.2 | HEC-RAS
3.1.2 | September
2005 | А | Culvert and bridge survey data was generated by combining a top of road survey point with field sketches and structures measurements. | | Walnut Branch | Confluence with
Guadalupe River | Approximately
2550 feet
upstream of
Interstate 10 | HEC-HMS 2.2.2 | HEC-RAS
3.1.2 | September
2005 | AE w/
Floodway | | | York Creek | Confluence with
San Marcos River | Hays County | Peak Discharge
values were
determined
using the
modified
discharge per
inch of runoff
curves | SCS-WSP-2 | 03/01/1979 | AE w/
Floodway | Curves from the NRCS "Work Plan for Watershed Protection and Flood Prevention, York Creek Watershed" | | | Table 13. Summary of Trydrologic and Trydraunc Analyses, (Continued) | | | | | | | | | |
---|--|--------------------------------|---------------------------------------|---|-------------------------------|--------------------------|------------------------|--|--|--| | Flooding Source | Study Limits Downstream Limit | Study Limits
Upstream Limit | Hydrologic
Model or
Method Used | Hydraulic
Model or
Method Used | Date
Analyses
Completed | Flood
Zone on
FIRM | Special Considerations | | | | | Zone A Streams (Alligator Creek, Bear Hollow Creek, Blue Creek, Brushy Creek, Buzzard Creek, Campbell Branch, Cantau Creek, Cibolo Tributary No. 16, Cottonwood Creek North, Darst Creek, Deadman Creek, Deadman Creek, Deer Creek, Elm Creek South, Fourmile Creek, Highsmith Creek, Konde Branch, Krams Creek, Little Creek, Long Branch, Long Creek (Tributary of the Guadalupe River), Mill Creek, Nash Creek, O'Neil Creek, Red Branch, Rudolph Creek, Santa Clara Creek, Saul Creek, Saul Creek, Saul Creek, Saul Creek, Sawlog Creek, Smith Creek, Tidwell Creek, Tidwell Creek, Town Creek, Wolf Creek, and Youngs Creek) | * | * | * | Regression
Equations with
Geo-RAS
generated
cross-sections,
boundary
conditions
created by
slope/area
method | September
2005 | A | | | | | **Table 14: Roughness Coefficients** | | • | | |---|-------------|--------------| | Flooding Source | Channel "n" | Overbank "n" | | Alligator Creek downstream of Schwarslose Rd | 0.025-0.065 | 0.060-0.110 | | Alligator Creek at Municipal
Airport | 0.035-0.040 | 0.060-0.070 | | Cibolo Creek, I-10 and downstream | 0.045-0.050 | 0.090-0.110 | | Cibolo Creek upstream of I-10 | 0.040-0.065 | 0.055-0.085 | | Cibolo Creek Tributary No. 13 | 0.035-0.045 | 0.040-0.090 | | Cottonwood Creek North | 0.075-0.085 | 0.080-0.100 | | Cottonwood Creek South | 0.040-0.060 | 0.075-0.110 | | Dietz Creek | 0.038-0.085 | 0.045-0.085 | | East Branch Dietz Creek | 0.040-0.085 | 0.040-0.100 | | Elm Creek North | 0.050 | 0.110 | | Elm Creek South | 0.050-0.060 | 0.090-0.130 | | Geronimo Creek | 0.030-0.050 | 0.050-0.110 | | Guadalupe River downstream of Geronimo Creek | 0.030-0.050 | 0.070-0.110 | | Guadalupe River from Geronimo
Creek to downstream of Dunlap
Dam | 0.018-0.045 | 0.018-0.100 | | Guadalupe River upstream of
Dunlap Dam | 1 | 1 | | Interstate Highway 10 Diversion | 0.040-0.075 | 0.040-0.080 | | Long Creek | 0.035-0.050 | 0.050-0.110 | | San Marcos River | 0.045-0.065 | 0.060-0.120 | | Santa Clara Creek | 0.035-0.065 | 0.060-0.110 | | Santa Clara Creek Tributary No. 1 | 0.040-0.045 | 0.075-0.090 | | Santa Clara Creek Tributary No. 2 | 0.040 | 0.090 | | Town Creek | 0.060-0.070 | 0.065-0.090 | | Town Creek Tributary No. 1 | 0.055 | 0.065-0.075 | | Walnut Branch | 0.015-0.110 | 0.015-0.110 | | | | | Table 14: Roughness Coefficients, (continued) | Flooding Source | Channel "n" | Overbank "n" | | | |-----------------|-------------|--------------|--|--| | York Creek | 0.045-0.090 | 0.065-0.095 | | | ¹Data Not Available # 5.3 Coastal Analyses This section is not applicable to this Flood Risk Project. **Table 15: Summary of Coastal Analyses** [Not Applicable to this Flood Risk Project] ## 5.3.1 Total Stillwater Elevations This section is not applicable to this Flood Risk Project. Figure 8: 1% Annual Chance Total Stillwater Elevations for Coastal Areas [Not Applicable to this Flood Risk Project] **Table 16: Tide Gage Analysis Specifics** [Not Applicable to this Flood Risk Project] ## **5.3.2 Waves** This section is not applicable to this Flood Risk Project. #### 5.3.3 Coastal Erosion This section is not applicable to this Flood Risk Project. ## 5.3.4 Wave Hazard Analyses This section is not applicable to this Flood Risk Project. **Table 17: Coastal Transect Parameters** [Not Applicable to this Flood Risk Project] **Figure 9: Transect Location Map** [Not Applicable to this Flood Risk Project] # 5.4 Alluvial Fan Analyses This section is not applicable to this Flood Risk Project. **Table 18: Summary of Alluvial Fan Analyses** [Not Applicable to this Flood Risk Project] **Table 19: Results of Alluvial Fan Analyses** [Not Applicable to this Flood Risk Project] ### **SECTION 6.0 – MAPPING METHODS** #### 6.1 Vertical and Horizontal Control All FIS Reports and FIRMs are referenced to a specific vertical datum. The vertical datum provides a starting point against which flood, ground, and structure elevations can be referenced and compared. Until recently, the standard vertical datum used for newly created or revised FIS Reports and FIRMs was the National Geodetic Vertical Datum of 1929 (NGVD29). With the completion of the North American Vertical Datum of 1988 (NAVD88), many FIS Reports and FIRMs are now prepared using NAVD88 as the referenced vertical datum. Flood elevations shown in this FIS Report and on the FIRMs are referenced to NAVD88. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between NGVD29 and NAVD88 or other datum conversion, visit the National Geodetic Survey website at www.ngs.noaa.gov, or contact the National Geodetic Survey (NGS) at the following address: NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242 Temporary vertical monuments are often established during the preparation of a flood hazard analysis for the purpose of establishing local vertical control. Although these monuments are not shown on the FIRM, they may be found in the archived project documentation associated with the FIS Report and the FIRMs for this community. Interested individuals may contact FEMA to access these data. To obtain current elevation, description, and/or location information for benchmarks in the area, please contact the Information Services Branch of the NGS at (301) 713-3242, or visit their website at www.ngs.noaa.gov. The countywide conversion factor of 0.8 feet was calculated for Guadalupe County. Table 20: Countywide Vertical Datum Conversion [Not Applicable to this Flood Risk Project] Table 21: Stream-Based Vertical Datum Conversion [Not Applicable to this Flood Risk Project] ## 6.2 Base Map The FIRMs and FIS Report for this project have been produced in a digital format. The flood hazard information was converted to a Geographic Information System (GIS) format that meets FEMA's FIRM Database specifications and geographic information standards. This information is provided in a digital format so that it can be incorporated into a local GIS and be accessed more easily by the community. The FIRM Database includes most of the tabular information contained in the FIS Report in such a way that the data can be associated with pertinent spatial features. For example, the information contained in the Floodway Data table and Flood Profiles can be linked to the cross sections that are shown on the FIRMs. Additional information about the FIRM Database and its contents can be found in FEMA's *Guidelines and Standards for Flood Risk Analysis and Mapping*, www.fema.gov/guidelines-and-standards-flood-risk-analysis-and-mapping. Base map information shown on the FIRM was derived from the sources described in Table 22. **Table 22: Base Map Sources** | Data Type | Data Provider | Data
Date | Data
Scale | Data Description | |-------------------------|-----------------------------------|--------------|---------------|---| | Political boundaries | TxDOT | 2015 | 1:5,000 | Municipal and county boundaries | | Transportation features | U.S.
Department of
Commerce | 2015 | * | Roads and railroads from
Tiger /line shapefile | | Transportation features | Bexar Metro 911 | 2004 | 1:24,000 | Roads and Railroad shapefile | ^{*}Data not available ## 6.3 Floodplain and Floodway Delineation The FIRM shows tints, screens, and symbols to indicate floodplains and floodways as well as the locations of selected cross sections used in the hydraulic analyses and floodway computations. For riverine flooding sources, the mapped floodplain boundaries shown on the FIRM have been delineated using the flood elevations determined at each cross section; between cross sections, the boundaries were interpolated using the topographic elevation data described in Table 23. In cases where the 1% and 0.2% annual chance floodplain boundaries are close together, only the 1% annual chance floodplain boundary has been shown. Small areas within the floodplain boundaries may lie above the flood elevations but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data. The floodway widths presented in this FIS Report and on the FIRM were computed for certain stream segments on the basis of equal conveyance reduction from each side of the floodplain. Floodway widths were computed at cross sections. Between cross sections, the floodway boundaries were interpolated. Table 2 indicates the flooding sources for which floodways have been determined. The results of the floodway computations for those flooding sources have been
tabulated for selected cross sections and are shown in Table 24, "Floodway Data." Table 23: Summary of Topographic Elevation Data used in Mapping | | | Source for Topographic Elevation Data | | | | | | | |---|---|--|-------|---------------------|-------------------|-----------|------------------|--| | Community | Flooding
Source | Description | Scale | Contour
Interval | RMSE _z | Accuracyz | Citation | | | Guadalupe
County,
Unincorporated
Areas; New
Braunfels, City
of; Seguin, City
of | Guadalupe
River;
Walnut
Branch | Light Detection
and Ranging
data (LiDAR) | N/A | 2 ft | N/A | N/A | SPECTRUM
2004 | | | | | | Source | for Topograpl | nic Elevation D | Data | | |---|---|--|----------|---------------------|-----------------|-----------|-----------------| | Community | Flooding
Source | Description | Scale | Contour
Interval | RMSEz | Accuracyz | Citation | | Guadalupe
County,
Unincorporated
Areas; Luling,
City of; Staples,
City of | San
Marcos
River | Light Detection
and Ranging
data (LiDAR) | N/A | NA | 18.59 cm | 170 cm | COA 2003 | | Seguin, City of | Walnut
Branch | Surveyed
Channel (digital) | 1:3,600 | 1 ft | N/A | N/A | USACE
2003 | | New Braunfels,
City of | Guadalupe
River
including
ETJ area | Topographic
map | 1:6,000 | 2 ft | N/A | N/A | LANDATA
2001 | | New Braunfels,
City of | Alligator
Creek | Topographic
map | 1:4,800 | 4 ft | N/A | N/A | TOBIN
1982 | | Cibolo, City of;
Marion, City of;
Guadalupe
County,
Unincorporated
Areas; Santa
Clara, City of;
Schertz, City of | Cibolo
Creek | Topographic
maps (TIN) | N/A | 2 ft / 5 ft | N/A | N/A | N/A | | Cibolo, City of;
New Berlin, City
of; Santa Clara,
City of, Schertz,
City of; Seguin,
City of | All other streams | 7.5-Minute
Quads – 30
Meter DEM's | 1:24,000 | 10 ft / 20 ft | N/A | N/A | USGS
TOPO | BFEs shown at cross sections on the FIRM represent the 1% annual chance water surface elevations shown on the Flood Profiles and in the Floodway Data tables in the FIS Report. **Table 24: Floodway Data** | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | | |-------------------|--|---|---|---|---|---|---|---| | CROSS
SECTION | DISTANCE | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H I | 2,050 ¹ 2,150 ₁ 10,300 ¹ 10,400 ¹ 13,800 ¹ 13,900 ¹ 17,750 ¹ 17,850 ¹ 3,930 ² | 365
479
190
192
732
749
325
492
339/90 ³ | 1,927 2,485 1,148 1,238 4,532 5,053 1,905 2,895 2,125 | 7.5
5.8
11.7
10.9
2.9
2.6
6.7
4.4
4.3 | 591.7
592.1
605.3
605.7
613.2
613.8
619.1
619.8
631.4 | 591.7
592.1
605.3
605.7
613.2
613.8
619.1
619.8
631.4 | 592.7
593.1
606.3
606.7
614.2
614.8
620.1
620.8
632.4 | 1.0
1.0
1.0
1.0
1.0
1.0
1.0 | | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|----------------------------------| | BLE | GUADALUPE COUNTY, TEXAS | 120021171 | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: ALLIGATOR CREEK | ¹Stream distance in feet above confluence with Geronimo Creek ²Stream distance in feet above downstream corporate limits (extended) ³Total width/Width Within Corporate Limits Table 24: Floodway Data, (continued) | LOCAT | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |-----------------------------------|---|---|--|---|---|---|---|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH ²
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | A B C D E F G H I J K L M N O P Q | 265,730
270,200
278,900
285,120
290,850
294,180
298,600
304,100
310,600
315,980
319,180
322,560
325,830
330,900
337,600
341,650
348,300 | 1,609/1,550
501/346
1,788/1,600
1,899/1,650
2,536/900
1,822/1,500
1,673/500
1,135/235
780/575
1,986/186
1,553/1,343
1,720/1,620
844/294
1,272/1,012
2,054/1,064
2,130/1,995
2,942/2,742 | 11,419
8,189
10,822
16,218
19,045
15,653
18,441
13,096
9,119
19,718
15,994
27,465
10,042
11,841
24,408
17,746
15,710 | 4.9
6.8
5.2
3.5
3.5
4.3
3.7
4.3
6.2
2.9
3.6
2.1
5.8
4.9
2.4
3.3
4.5 | 482.9
489.4
500.1
507.2
512.8
517.4
522.4
530.1
537.4
545.7
548.8
551.2
554.9
562.1
567.3
570.0
578.8 | 482.9
489.4
500.1
507.2
512.8
517.4
522.4
530.1
537.4
545.7
548.8
551.2
554.9
562.1
567.3
570.0
578.8 | 483.8
490.1
500.9
508.1
513.8
518.4
523.4
531.1
538.3
546.7
549.7
552.2
555.8
562.9
568.2
570.7
579.6 | 0.9
0.7
0.8
0.9
1.0
1.0
1.0
0.9
1.0
0.9
1.0
0.9
1.0
0.9 | | | R | 353,500 | 3,359/3,259 | 22,892 | 3.1 | 586.2 | 586.2 | 587.2 | 1.0 | | ¹Stream distance in feet above confluence with San Antonio River ²Width/Width Within County | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|-------------------------------| | BLE | GUADALUPE COUNTY, TEXAS | | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: CIBOLO CREEK | Table 24: Floodway Data, (continued) | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | | |---|---|---|--|---|---|---|---|---| | CROSS
SECTION DIST. | ANCE ¹ | WIDTH ²
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | T 362
U 372
V 376
W 379
X 382
Y 383
Z 386
AA 387
AB 394
AC 396
AD 399
AE 401
AF 403
AG 405
AH 407 | 7,080
2,150
2,840
6,880
9,700
2,522
3,811
6,042
7,329
4,251
6,117
9,722
1,658
3,073
5,800
7,323
8,038 |
466/341
1,574/300
2,072/2,022
840/780
1,012/387
1,851/1,617
909/424
1,445/1,061
1,886/1,762
370/84
785/530
1,670/1,623
714/492
571/182
548/31
306/223
628/592 | 9,436
24,191
17,484
11,222
8,406
17,764
14,376
21,327
22,015
9,235
12,572
21,840
19,720
14,874
18,222
8,521
20,866 | 7.5
2.9
4.1
6.3
8.4
9.0
8.0
5.6
6.3
11.0
10.4
6.5
5.1
6.7
5.5 | 591.4
596.8
607.9
613.5
618.8
626.6
629.5
633.7
635.8
640.4
648.2
654.0
656.8
657.8
661.0
662.3
665.8 | 591.4
596.8
607.9
613.5
618.8
626.6
629.5
633.7
635.8
640.4
648.2
654.0
656.8
657.8
661.0
662.3
665.8 | 591.7
597.6
608.4
614.3
619.7
627.4
630.2
634.6
636.3
641.1
649.0
654.8
657.6
658.6
661.9
663.1
666.7 | 0.3
0.8
0.5
0.8
0.9
0.8
0.7
0.9
0.5
0.7
0.8
0.8
0.8
0.8
0.9 | ¹Stream distance in feet above confluence with San Antonio River ²Width/Width Within County | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|-------------------------------| | BLE | GUADALUPE COUNTY, TEXAS | 120001171 | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: CIBOLO CREEK | Table 24: Floodway Data, (continued) | LOCA | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | | |------------------|-----------------------|------------------------------|-------------------------------|--------------------------------|------------|--|------------------|----------|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH ²
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | AK | 418,516 | 1,906/190 | 19,543 | 5.1 | 672.9 | 672.9 | 673.6 | 0.7 | | | AL | 419,470 | 2,490/113 | 16,568 | 6.0 | 677.3 | 677.3 | 677.8 | 0.5 | | | AM | 423,625 | 693/52 | 11,662 | 8.6 | 686.1 | 686.1 | 687.0 | 0.9 | | | AN | 427,183 | 592/521 | 14,018 | 6.2 | 695.1 | 695.1 | 696.1 | 1.0 | | | AO | 432,987 | 800/631 | 15,893 | 5.5 | 699.9 | 699.9 | 700.7 | 0.8 | | | AP | 435,043 | 422/205 | 11,558 | 6.5 | 702.9 | 702.9 | 703.8 | 0.9 | | | AQ | 437,996 | 1,608/1,545 | 31,640 | 2.4 | 705.6 | 705.6 | 706.5 | 0.9 | | | AR | 440,762 | 243/89 | 6,029 | 12.4 | 706.2 | 706.2 | 707.1 | 0.9 | | | AS | 442,214 | 456/144 | 8,375 | 8.9 | 710.5 | 710.5 | 711.4 | 0.9 | | | AT | 445,235 | 602/267 | 13,377 | 5.6 | 716.5 | 716.5 | 717.3 | 0.8 | | | AU | 446,577 | 435/199 | 11,130 | 7.5 | 720.1 | 720.1 | 720.3 | 0.2 | | | AV | 448,507 | 1,025/862 | 23,287 | 4.3 | 725.4 | 725.4 | 725.4 | 0.0 | | | AW | 453,783 | 661/169 | 10,812 | 9.2 | 727.2 | 727.2 | 727.3 | 0.1 | | | AX | 456,713 | 446/310 | 11,277 | 8.9 | 734.4 | 734.4 | 734.9 | 0.5 | | | AY | 457,901 | 412/113 | 9,648 | 10.4 | 736.2 | 736.2 | 736.6 | 0.4 | | | AZ | 459,264 | 457/268 | 12,019 | 8.3 | 741.1 | 741.1 | 741.4 | 0.3 | | | BA | 460,345 | 499/223 | 11,748 | 8.5 | 743.4 | 743.4 | 743.7 | 0.3 | | | BB | 466,729 | 408/139 | 11,482 | 8.7 | 755.6 | 755.6 | 756.4 | 0.8 | | | BC | 471,196 | 1,496/824 | 29,405 | 3.4 | 763.0 | 763.0 | 763.8 | 0.8 | | ¹Stream distance in feet above confluence with San Antonio River ²Width/Width Within County | _
A | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----------|-------------------------------------|-------------------------------| | ָ
בַּ | GUADALUPE COUNTY, TEXAS | 1 2005 1171 | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: CIBOLO CREEK | Table 24: Floodway Data, (continued) | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | | |-----------------------------------|--|---|---|---|---|--|---|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H – J K L M N O P Q | 4,400
6,350
11,900
12,000
14,300
16,500
20,900
21,800
24,800
27,900
32,100
32,200
35,800
42,450
42,550
42,900
44,200 | 1,106
953
237
319
747
1,055
1,007
564
370
679
208
264
671
194
194
262
227 | 5,952
4,010
1,727
2,776
4,422
4,029
4,347
4,349
2,962
3,774
1,480
2,026
3,028
1,674
1,674
1,640
1,477 | 2.0
2.8
6.5
4.0
2.5
2.6
2.3
2.2
3.4
2.6
5.3
3.9
2.5
4.2
4.2
4.3
4.5 | 455.7
460.7
471.7
473.5
479.3
484.6
493.2
499.1
505.5
512.4
521.3
522.6
530.3
548.1
549.1
550.3
552.8 | 455.5 ² 460.7 471.7 473.5 479.3 484.6 493.2 499.1 505.5 512.4 521.3 522.6 530.3 548.1 549.1 550.3 552.8 | 456.5
461.7
472.7
474.5
480.3
485.6
494.2
500.1
506.5
513.4
522.3
523.6
531.3
549.1
550.1
551.3
553.8 | 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | | R
R | 44,300 | 239 | 1,621 | 4.1 | 553.8 | 553.8 | 554.8 | 1.0 | ¹Stream distance in feet above mouth ²Elevation Computed Without Consideration of Backwater Effects | TAI | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|---| | E | GUADALUPE COUNTY, TEXAS | | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: COTTONWOOD CREEK NORTH | Table 24: Floodway Data, (continued) | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | RFACE | |------------------|--------------------------------------|--------------------------|----------------------------------|--------------------------------|--|----------------------------------|----------------------------------|--------------------------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | S
T
U
V | 46,100
46,200
46,950
47,050 | 701
609
410
377 | 3,036
2,613
1,617
1,661 | 1.9
2.3
3.6
3.5 | 557.5
557.8
561.0
561.6 | 557.5
557.8
561.0
561.6 | 558.5
558.8
562.0
562.6 | 1.0
1.0
1.0
1.0 | ¹Stream distance in feet above mouth | 7 | FEDERAL EMERGENCY MANAGEMENT AGENCY | EL CODIMAY DATA | | | | |------|-------------------------------------|---|--|--|--| | ABLE | GUADALUPE COUNTY, TEXAS | FLOODWAY DATA | | | | | € 24 | AND INCORPORATED AREAS | FLOODING SOURCE: COTTONWOOD CREEK NORTH | | | | Table 24: Floodway Data, (continued) | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |------------------|---|---|--|--|--|--|--|---| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H | 800
15,150
15,250
25,000
36,650
36,750
42,900
54,000 | 246
803
449
773
420
439
264
100 ² | 6,723
5,649
3,300
5,650
2,643
3,001
1,339
404 | 2.5
2.7
4.7
2.6
2.7
2.4
3.8
5.9 | 471.9
475.1
475.6
489.6
512.3
512.8
527.3
580.9 | 468.0 ³ 475.1 475.6 489.6 512.3 512.8 527.3 580.9 | 469.0
476.1
476.6
490.6
513.3
513.8
528.3
581.9 | 1.0
1.0
1.0
1.0
1.0
1.0
1.0 | ¹Stream distance in feet above mouth ²Discharge Contained Within the Channel ³Elevation Computed Without Consideration of Backwater Effects | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |-----|-------------------------------------|---|--|--|--| | BLE | GUADALUPE COUNTY, TEXAS | I LOODIINI DAIN | | | | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: COTTONWOOD CREEK SOUTH | | | | Table 24: Floodway Data, (continued) | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |---------------------------------
---|---|---|--|---|---|---|---| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H I J K L M N O D | 1,571
1,643
4,076
5,147
7,476
7,657
9,059
11,790
11,886
12,597
12,797
13,118
15,612
15,753
16,445 | 182
470
220
311
249
224
237
182
211
157
152
169
203
420
242 | 1,547
5,527
2,164
2,501
2,271
1,359
1,336
1,220
1,441
859
718
1,173
1,470
3,056
1,816 | 12.9
3.1
5.3
5.7
6.0
7.9
7.0
7.5
6.8
10.3
12.3
7.6
5.6
2.7
4.5 | 685.6
692.7
693.0
696.5
697.9
699.0
702.6
708.9
709.8
711.3
713.1
716.5
722.2
727.8
727.9 | 685.6
692.7
693.0
696.5
697.9
699.0
702.6
708.9
709.8
711.3
713.1
716.5
722.2
727.8
727.9 | 686.6
693.6
693.9
696.7
698.0
699.2
702.6
708.9
709.8
711.3
713.1
716.5
722.2
728.7
728.8 | 1.0
0.9
0.9
0.2
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | | P
Q
R | 17,084
17,696
19,073 | 180
445
490 | 1,675
1,563
2,012 | 3.8
4.1
3.2 | 728.4
731.7
735.7 | 728.4
731.7
735.7 | 729.2
732.1
736.7 | 0.8
0.4
1.0 | ¹Stream distance in feet above confluence with Cibolo Creek | | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | |---|-------------------------------------|------------------------------|--|--| | | | | | | | 1 | AND INCORPORATED AREAS | FLOODING SOURCE: DIETZ CREEK | | | Table 24: Floodway Data, (continued) | LOCAT | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | |--|--|--|--|---|--|--|--|---| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | S
T
U
V
W
X
Y
Z
AA
AB
AC
AD | 19,857
21,187
21,836
22,743
23,069
23,672
25,100
25,970
26,248
26,483
28,629
29,255 | 420
255
380
340
320
235
345
272
138
236
128
350 | 1,725
1,370
1,851
1,330
1,517
1,240
1,593
546
896
1,135
468
896 | 3.7
4.7
3.5
4.8
4.2
3.8
3.0
11.8
6.1
4.2
6.7
3.5 | 739.6
744.3
744.6
746.8
749.0
750.2
751.4
754.0
757.5
758.3
761.7
765.2 | 739.6
744.3
744.6
746.8
749.0
750.2
751.4
754.0
757.5
758.3
761.7
765.2 | 740.1
744.8
745.5
747.7
749.4
751.1
752.2
754.0
757.6
758.4
761.7
765.3 | 0.5
0.5
0.9
0.9
0.4
0.9
0.8
0.0
0.1
0.1
0.0 | ¹Stream distance in feet above confluence with Cibolo Creek | | ΑT | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | |---|-----|-------------------------------------|------------------------------|--|--| | Ī | BLE | GUADALUPE COUNTY, TEXAS | TEOODWAT DATA | | | | 1 | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: DIETZ CREEK | | | Table 24: Floodway Data, (continued) | LOCA | LOCATION FLOODWAY | | | | 1% ANNUAL CHANCE FLOOD WATER SURFA
ELEVATION (FEET NAVD88) | | | | |---------------------------------|-----------------------|-----------------|-------------------------------|--------------------------------|---|---------------------|------------------|----------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H I J K L M N O P | 1,537 | 161 | 1,812 | 5.4 | 693.3 | 693.3 | 693.5 | 0.2 | | | 1,768 | 186 | 1,972 | 4.9 | 693.4 | 693.4 | 693.8 | 0.4 | | | 2,289 | 222 | 1,789 | 5.4 | 698.2 | 698.2 | 698.2 | 0.0 | | | 2,411 | 174 | 1,270 | 7.7 | 698.2 | 698.2 | 698.2 | 0.0 | | | 2,479 | 227 | 1,987 | 4.9 | 700.0 | 700.0 | 700.6 | 0.6 | | | 2,892 | 191 | 1,454 | 6.7 | 700.5 | 700.5 | 701.0 | 0.5 | | | 4,534 | 151 | 994 | 9.8 | 706.5 | 706.5 | 706.5 | 0.0 | | | 6,351 | 132 | 929 | 10.5 | 717.3 | 717.3 | 717.3 | 0.0 | | | 6,410 | 136 | 1,188 | 8.2 | 719.5 | 719.5 | 719.7 | 0.2 | | | 7,351 | 180 | 1,112 | 7.4 | 725.4 | 725.4 | 725.5 | 0.1 | | | 7,657 | 172 | 797, | 10.4 | 726.4 | 726.4 | 726.4 | 0.0 | | | 8,386 | 260 | 1,716 | 3.8 | 732.3 | 732.3 | 733.1 | 0.8 | | | 8,523 | 310 | 1,829 | 3.6 | 732.5 | 732.5 | 733.2 | 0.7 | | | 9,991 | 200 | 1,375 | 4.8 | 739.5 | 739.5 | 740.5 | 1.0 | | | 10,087 | 180 | 1,350 | 4.9 | 740.6 | 740.6 | 741.3 | 0.7 | | | 11,816 | 145 | 1,010 | 4.7 | 748.7 | 748.7 | 749.3 | 0.6 | | Q | 11,907 | 145 | 1,328 | 3.6 | 751.6 | 751.6 | 752.2 | 0.6 | | R | 12,922 | 140 | 791 | 7.7 | 755.7 | 755.7 | 756.5 | 0.8 | Stream distance in feet above confluence with Dietz Creek | \vdash | FEDERAL EMERGENCY MANAGEMENT AGENCY | | |----------|-------------------------------------|--| | ≥ | | FLOODWAY DATA | | 띧 | CHADALLIDE COLINTY TEVAC | | | iп | GUADALUPE COUNTY, TEXAS | | | Ņ | | FLOODING SOURCE: EAST BRANCH DIETZ CREEK | | 4 | AND INCORPORATED AREAS | | Table 24: Floodway Data, (continued) | LOCAT | ION | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | RFACE | |-----------------------------------|--|---|---|--|--|--|--|---| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | S T U V W X Y Z AA AB AC AD AE AF | 13,014
13,958
14,016
14,941
14,996
15,777
17,793
18,321
19,014
19,644
20,340
21,105
21,202
21,829 | 158
197
192
122
156
125
137
72
54
111
33
19
100
64 | 947
877
1,094
527
654
468
307
48
44
104
38
32
232
72 | 5.0
5.7
4.3
5.6
4.5
6.3
0.8
4.9
5.2
2.2
6.1
7.4
2.7
3.3 | 757.9
763.6
765.3
772.0
772.4
777.0
790.3
794.6
802.5
810.8
819.6
830.9
834.0
844.7 | 757.9
763.6
765.3
772.0
772.4
777.0
790.3
794.6
802.5
810.8
819.6
830.9
834.0
844.7 | 758.2
764.2
766.2
772.0
773.3
777.3
791.3
794.6
802.5
810.8
819.6
830.9
834.0
844.7 | 0.3
0.6
0.9
0.0
0.9
0.3
1.0
0.0
0.0
0.0
0.0
0.0
0.0 | ¹Stream distance in feet above confluence with Dietz Creek | | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-----|-------------------------------------|--| | 1 1 | BLE | GUADALUPE COUNTY, TEXAS | 1 LOODWAY DAYA | | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: EAST BRANCH DIETZ CREEK | Table 24: Floodway Data, (continued) | LOCAT | LOCATION | | FLOODWAY | | | AL CHANCE FLO
ELEVATION (FE | OOD WATER SU
EET NAVD88) | RFACE | |------------------|----------------------------|-------------------|-------------------------------|--------------------------------|-------------------------
--------------------------------|-----------------------------|-------------------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A
B
C | 11,000
11,100
14,400 | 405
459
537 | 2,159
2,444
1,866 | 1.6
7.0
6.1 | 515.4
515.9
525.9 | 515.4
515.9
525.9 | 516.4
516.9
526.9 | 1.0
1.0
1.0 | ¹Stream distance in feet above mouth | ΤA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|----------------------------------| | BLE | GUADALUPE COUNTY, TEXAS | 1 2002 11711 | | !!! | | FLOODING COURSE FLM ORFEIT NORTH | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: ELM CREEK NORTH | Table 24: Floodway Data, (continued) | LOCA | LOCATION FLOODWAY | | LOCATION FLOODWAY | | 1% ANNU | AL CHANCE FLO
ELEVATION (FE | | RFACE | |------------------|--|--|--|--|--|--|--|---------------------------------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F | 18,500
26,800
39,250
39,350
49,900
56,250 | 801
1,231
1,284
1,264
516
643 | 6,790
8,311
7,031
6,994
3,838
3,553 | 3.1
2.3
1.9
1.9
2.8
2.5 | 465.2
471.0
485.6
485.9
504.5
516.5 | 463.4 ² 471.0 485.6 485.9 504.5 516.5 | 464.4
472.0
486.6
486.9
505.5
517.5 | 1.0
1.0
1.0
1.0
1.0 | | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|----------------------------------| | BLE | GUADALUPE COUNTY, TEXAS | 1 LOODWAY DAYA | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: ELM CREEK SOUTH | ¹Stream distance in feet above mouth ²Elevation Computed Without Consideration of Backwater Effects Table 24: Floodway Data, (continued) | LOCA | TION | | FLOODWAY | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | RFACE | |-------------------------------|---|--|---|---|---|--|---|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H – J K L M N O | 2,700
14,150
14,250
23,150
23,250
36,550
36,650
56,250
56,350
63,350
65,100
65,200
73,800
79,500
79,600 | 206
432
407
449
401
172
165
196
416
407
196
316 ²
333
211
259 | 4,053
2,660
3,231
2,411
2,977
1,727
1,817
2,897
4,601
3,873
1,705
2,735
1,868
1,151
1,267 | 7.7
9.2
7.6
9.8
7.9
13.0
12.3
6.6
4.1
4.3
9.8
6.1
8.6
5.3
4.8 | 463.2
471.0
472.5
487.8
490.7
514.3
515.0
559.1
560.0
572.1
573.4
574.4
588.7
603.5
604.1 | 457.6 ³ 471.0 472.5 487.8 490.7 514.3 515.0 559.1 560.0 572.1 573.4 574.4 588.7 603.5 604.1 | 458.6
472.0
473.5
488.8
491.7
515.3
516.0
560.1
561.0
573.1
574.4
575.4
589.7
604.5
605.1 | 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | | P
Q | 83,400
83,500 | 200
450 | 996
2,013 | 5.3
2.6 | 611.5
612.3 | 611.5
612.3 | 612.5
613.3 | 1.0
1.0 | ¹Stream distance in feet above mouth ²Discharge Contained Within the Channel ³Elevation Computed Without Consideration of Backwater Effects | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|---------------------------------| | BLE | GUADALUPE COUNTY, TEXAS | 1 2005 1171 | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: GERONIMO CREEK | **Table 24: Floodway Data, (continued)** | LOCATION | | LOCATION FLOODWAY | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | | | |--------------------------------------|--|--|--|--|--|--|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A
B
C
D
E
F
G
H | 228.13
229.47
230.98
233.18
236.86
239.37
242.23
244.63 | 2,968
2,694
278
578
946
254
1,356
1,626 | 64,720
35,520
8,480
14,880
23,040
6,190
19,200
26,720 | 1.5
2.7
11.2
6.3
4.1
14.4
4.5
3.2 | 384.0
386.9
390.4
403.4
415.3
421.3
431.0
440.0 | 384.0
386.9
390.4
403.4
415.3
421.3
431.0
440.0 | 385.0
387.9
391.4
404.4
416.3
422.3
432.0
441.0 | 1.0
1.0
1.0
1.0
1.0
1.0 | Stream distance in miles above mouth | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|----------------------------------| | BLE | GUADALUPE COUNTY, TEXAS | | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: GUADALUPE RIVER | Table 24: Floodway Data, (continued) | LOCA | LOCATION | | LOCATION FLOODWAY 19 | | | 1% ANNU | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |------------------|-----------------------|-----------------|-------------------------------|--------------------------------|----------------|---------------------|---|------------|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | l | 105,194 | 475 | 15,317 | 10.9 | 458.0 | 458.0 | 458.2 | 0.2 | | | | I | 114,736 | 1,270 | 28,966 | 5.2 | 464.4 | 464.4 | 464.7 | 0.3 | | | | K | 115,777
117,310 | 1,166 | 24,920 | 6.1
5.4 | 464.9
466.8 | 464.9
466.8 | 465.1
467.2 | 0.2 | | | | M | 118,314 | 1,731
1,398 | 28,000
23,894 | 6.3 | 467.5 | 467.5 | 467.9 | 0.4
0.4 | | | | N | 119,260 | 1,598 | 31,212 | 5.0 | 468.8 | 468.8 | 469.1 | 0.3 | | | | O | 120,580 | 2,393 | 40,745 | 3.8 | 470.4 | 470.4 | 470.8 | 0.4 | | | | P | 125,223 | 2,650 | 34,634 | 4.5 | 471.4 | 471.4 | 471.9 | 0.5 | | | | Q | 126,651 | 1,225 | 26,522 | 6.0 | 472.7 | 472.7 | 473.1 | 0.4 | | | | R | 127,384 | 1,968 | 31,584 | 6.7 | 474.4 | 474.4 | 475.2 | 0.8 | | | | S | 129,112 | 1,648 | 32,459 | 4.5 | 476.9 | 476.9 | 477.5 | 0.6 | | | | T | 130,101 | 1,124 | 23,413 | 6.3 | 477.0 | 477.0 | 477.6 | 0.6 | | | | U | 132,722 | 911 | 18,168 | 8.1 | 477.0 | 477.0 | 477.4 | 0.4 | | | | V | 134,178 | 1,536 | 24,313 | 6.0 | 478.1 | 478.1 | 479.0 | 0.9 | | | | W | 135,645 | 1,673 | 24,644 | 5.9 | 479.9 | 479.9 | 480.3 | 0.4 | | | | X | 136,201 | 872 | 18,337 | 8.0 | 480.9 | 480.9 | 481.5 | 0.6 | | | | Y | 137,904 | 994 | 19,425 | 7.5 | 482.6 | 482.6 | 483.5 | 0.9 | | | | Z | 138,801 | 838 | 18,551 | 7.9 | 484.6 | 484.6 | 485.2 | 0.6 | | | Stream distance in feet above County Line | | ΑT | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |---|-----|-------------------------------------|----------------------------------|--|--|--| | | BLE | GUADALUPE COUNTY, TEXAS | | | | | | ! | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: GUADALUPE RIVER | | | | Table 24: Floodway Data, (continued) | LOCATION FLOODWAY | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | | | | |--|--|--|--|--
--|--|--|---| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | AA
AB
AC
AD
AE
AF
AG
AH
AI
AJ
AK
AL
AM
AN
AO
AP | 138,801
139,861
141,675
143,860
145,680
147,745
148,900
149,922
151,397
152,818
154,666
156,379
157,631
159,948
161,922
163,429 | 663
954 ²
624
787
1,329
2,262 ²
1,532
2,350
2,240
2,010
2,376
2,761
2,921
3,082
2,718
3,405 | 15,626
18,758
15,255
21,845
28,012
38,460
31,052
39,480
35,033
30,073
29,776
27,282
26,401
32,918
33,479
44,004 | 8.0
6.7
8.2
5.7
4.5
3.8
4.7
3.7
4.1
4.8
4.9
5.3
5.5
4.4
4.3
3.3 | 485.2
486.4
487.1
490.2
491.1
492.0
492.3
492.9
493.5
494.4
495.1
496.0
497.2
500.3
502.2
504.7 | 485.2
486.4
487.1
490.2
491.1
492.0
492.3
492.9
493.5
494.4
495.1
496.0
497.2
500.3
502.2
504.7 | 485.9
487.1
487.7
490.7
491.5
492.4
492.7
493.2
494.1
495.1
495.7
496.5
497.8
500.9
502.6
505.6 | 0.7
0.7
0.6
0.5
0.4
0.4
0.3
0.6
0.7
0.6
0.5
0.6
0.5 | | AQ
AR | 163,786
165,287 | 2,760
1,327 | 35,446
22,373 | 4.1
6.4 | 504.7
505.1 | 504.7
505.1 | 505.6
506.0 | 0.9
0.9 | ¹Stream distance in feet above County Line ²Floodway Width Includes Overflow | ٦A | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |-----|-------------------------------------|-----------------------------------|--|--|--| | BLE | GUADALUPE COUNTY, TEXAS | TEOODWAT DATA | | | | | " | | ELOODING SOURCE, CHARALLIRE BIVER | | | | | 4 | AND INCORPORATED AREAS | FLOODING SOURCE: GUADALUPE RIVER | | | | Table 24: Floodway Data, (continued) | LOCA | LOCATION | | LOCATION FLOODWAY | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |---|--|--|--|---|--|--|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | AS AT AU AV AW AX AY AZ BA BB BC BD BE BF BG BH | 166,553
167,370
168,734
171,953
173,627
174,836
176,064
177,386
178,924
179,961
180,771
182,256
183,413
185,142
185,940
186,839 | 1,278 1,550 2,319 3,095 2,562 751 91 1,500 1,974 1,257 1,074 565 770 472 420 422 | 30,671
28,689
40,411
44,893
32,459
16,034
21,482
31,807
29,324
30,363
23,790
16,489
25,115
13,424
11,730
12,372 | 4.7
5.0
3.6
3.2
4.4
8.9
6.7
4.4
4.8
5.9
5.9
8.5
5.6
10.4
11.9
11.3 | 515.4
515.6
516.3
516.9
517.5
517.5
519.0
520.5
521.0
522.1
523.2
523.6
524.8
524.8
524.8
524.8 | 515.4
515.6
516.3
516.9
517.5
517.5
519.0
520.5
521.0
522.1
523.2
523.6
524.8
524.8
524.8
524.8 | 515.6
515.8
516.9
517.6
518.1
518.0
519.7
521.2
521.5
522.6
523.8
524.2
525.4
524.9
525.3
527.0 | 0.2
0.2
0.6
0.7
0.6
0.6
0.7
0.5
0.5
0.6
0.6
0.1
0.5
0.4 | | BI
BJ | 188,612
189,799 | 410
525 | 13,052
14,783 | 10.5
9.3 | 528.9
530.3 | 528.9
530.3 | 529.6
531.0 | 0.7
0.7 | Stream distance in feet above County Line | | ΑT | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |-----|-----|-------------------------------------|----------------------------------|--|--|--| | 1 1 | BLE | GUADALUPE COUNTY, TEXAS | | | | | | ! | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: GUADALUPE RIVER | | | | Table 24: Floodway Data, (continued) | LOCATION | | LOCATION FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | | |------------------|-----------------------|-------------------|-------------------------------|--------------------------------|--|---------------------|------------------|----------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | DI | 101.010 | 40.5 | 45.000 | 0.0 | 504.5 | 504.5 | 500.4 | 0.0 | | BK | 191,042 | 485 | 15,633 | 8.8 | 531.5 | 531.5 | 532.4 | 0.9 | | BL | 192,185 | 738 | 19,297 | 7.1 | 533.6 | 533.6 | 534.3 | 0.7 | | BM | 193,297 | 1,041 | 16,625 | 8.2 | 534.5 | 534.5 | 535.2 | 0.7 | | BN | 194,434 | 500 | 12,829 | 10.7 | 540.5 | 540.5 | 541.1 | 0.6 | | ВО | 195,338 | 1,598 | 24,010 | 6.0 | 542.2 | 542.2 | 542.9 | 0.7 | | BP | 196,429 | 1,753 | 23,850 | 6.0 | 542.9 | 542.9 | 543.4 | 0.5 | | BQ | 197,395 | 2,226 | 42,419 | 3.2 | 543.8 | 543.8 | 544.3 | 0.5 | | BR | 198,502 | 4,757 | 70,022 | 2.0 | 544.0 | 544.0 | 544.5 | 0.5 | | BS | 199,435 | 4,609 | 70,787 | 1.9 | 544.0 | 544.0 | 544.5 | 0.5 | | BT | 200,402 | 3,193 | 36,515 | 3.8 | 544.0 | 544.0 | 544.4 | 0.4 | | BU | 201,645 | 2,017 | 22,458 | 6.1 | 544.2 | 544.2 | 544.6 | 0.4 | | BV | 202,828 | 1,217 | 17,030 | 8.0 | 544.9 | 544.9 | 545.3 | 0.4 | | BW | 204,511 | 901 | 16,086 | 8.5 | 546.2 | 546.2 | 546.6 | 0.4 | | BX | 205,502 | 520 | 15,859 | 8.6 | 547.3 | 547.3 | 548.0 | 0.7 | | BY | 206,866 | 1,406 | 16,985 | 8.1 | 548.1 | 548.1 | 548.7 | 0.6 | | BZ | 207,908 | 1,945 | 21,464 | 6.4 | 549.3 | 549.3 | 550.1 | 0.8 | | CA | 208,727 | 2,205 | 22,432 | 6.1 | 549.6 | 549.6 | 550.6 | 1.0 | | CB | 209,864 | 2,322 | 24,803 | 5.5 | 550.5 | 550.5 | 551.4 | 0.9 | ¹Stream distance in feet above County Line | | ΑT | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |---|-----|-------------------------------------|----------------------------------|--|--|--| | | BLE | GUADALUPE COUNTY, TEXAS | | | | | | ! | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: GUADALUPE RIVER | | | | Table 24: Floodway Data, (continued) | LOCATION | | EL EL | | | AL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |--|--|--|--|---|--|--|---|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | CC
CD
CE
CF
CG
CH
CI
CJ
CK
CM
CO
CP
CQ
CR | 210,996
212,246
213,575
215,013
216,509
217,511
219,165
220,975
221,991
223,346
225,771
227,856
229,815
231,349
232,679
233,568 | 1,183
1,229
1,867
2,338
2,490
1,909
1,359
831
420
1,409
445
451
333
465
567
599 | 16,288
14,692
16,741
27,742
30,706
28,623
25,689
14,166
11,691
25,237
12,839
12,592
10,775
13,876
14,498
19,156 | 8.2
9.1
8.0
4.8
4.1
4.4
4.9
8.9
10.8
5.0
9.8
10.0
11.6
9.0
8.6
6.5 |
550.7
552.1
554.0
556.2
557.1
557.8
558.8
559.3
560.0
563.0
563.3
565.4
567.4
571.0
572.5
574.4 | 550.7
552.1
554.0
556.2
557.1
557.8
558.8
559.3
560.0
563.0
563.3
565.4
567.4
571.0
572.5
574.4 | 551.6
553.1
555.0
556.9
557.7
558.3
559.3
559.8
560.5
563.3
563.5
565.8
565.8
565.8
565.8 | 0.9
1.0
1.0
0.7
0.6
0.5
0.5
0.5
0.3
0.2
0.4
0.6
0.6
0.7 | ¹Stream distance in feet above County Line | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |-----|-------------------------------------|----------------------------------|--|--|--| | BLE | GUADALUPE COUNTY, TEXAS | | | | | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: GUADALUPE RIVER | | | | Table 24: Floodway Data, (continued) | LOCA | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | |--|---|---|---|--|---|--|---|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | CS
CT
CU
CV
CW
CX
CY
CZ
DA
DB
DC
DD | 961
1,832
3,966
6,040
8,042
10,047
13,959
17,134
19,115
21,234
23,381
25,329
26,994 | 1,560
1,296
1,470
894
900
893
920
524
502
753
1,070
424
582 | 32,634
29,630
26,429
24,844
19,819
25,010
22,377
15,059
13,111
13,645
13,663
9,075
14,452 | 3.8
4.1
4.7
4.9
6.2
4.9
5.5
8.0
9.2
8.9
8.9
13.3
8.4 | 588.5
588.6
588.6
589.0
589.0
589.7
590.4
591.2
591.6
592.0
592.2
594.0
597.8 | 588.5
588.6
589.0
589.0
589.7
590.4
591.2
591.6
592.0
592.2
594.0
597.8 | 589.5
589.5
586.6
590.0
590.0
590.6
591.3
592.0
592.4
592.8
593.1
594.6
598.5 | 1.0
1.0
1.0
1.0
1.0
0.9
0.9
0.8
0.8
0.8
0.9
0.6 | ¹Stream distance in feet above Dunlap Dam | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|----------------------------------| | BLE | GUADALUPE COUNTY, TEXAS | 1 EGGDWAT DATA | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: GUADALUPE RIVER | Table 24: Floodway Data, (continued) | LOCA | LOCATION FLOODWAY | | TION FLOODWAY 1% ANNUAL CHANCE FI ELEVATION (F | | | | | RFACE | |------------------|----------------------------|-------------------|--|--------------------------------|-------------------------|-------------------------|-------------------------|-------------------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C | 21,300
21,400
31,200 | 479
427
156 | 6,022
5,045
1,098 | 1.2
1.4
5.3 | 562.4
562.7
597.0 | 562.4
562.7
597.0 | 563.4
563.7
598.0 | 1.0
1.0
1.0 | ¹Stream distance in feet above mouth | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----|-------------------------------------|-----------------------------| | | GUADALUPE COUNTY, TEXAS | 1 EGGDWAT DATA | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: LONG CREEK | Table 24: Floodway Data, (continued) | LOC | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | |------------------|-----------------------|----------------------------|-------------------------------|--------------------------------|------------|---|------------------|----------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | | | | | | | | | | Q | 168,643 | 4,283 / 3,231 ² | 40,014 | 2.4 | 350.8 | 350.8 | 351.4 | 0.6 | | R | 175,976 | 3,706 / 1,953 ² | 40,239 | 3.5 | 354.5 | 354.5 | 355.1 | 0.6 | | S | 190,366 | 3,575 / 3,427 ² | 36,934 | 5.7 | 361.8 | 361.8 | 362.6 | 0.8 | | Т | 194,426 | 4,017 / 2,680 ² | 51,954 | 2.7 | 364.9 | 364.9 | 365.6 | 0.7 | | U | 196,464 | 3,071 / 2,740 ² | 35,913 | 4 | 365.7 | 365.7 | 366.5 | 0.8 | | V | 200,764 | 3,673 / 1,666 ² | 39,861 | 3.6 | 368.4 | 368.4 | 369.2 | 0.8 | | W | 203,261 | 4,506 / 93 ² | 48,255 | 3 | 369.5 | 369.5 | 370.4 | 0.9 | | X | 217,139 | 4,126 / 3,428 ² | 50,208 | 2.8 | 377.2 | 377.2 | 377.9 | 0.7 | | Υ | 223,385 | 3,234 / 1,932 ² | 45,036 | 3.2 | 381.8 | 381.8 | 382.1 | 0.3 | | Z | 226,868 | 4,296 / 2,723 ² | 51,973 | 2.7 | 383.5 | 383.5 | 384 | 0.5 | | AA | 232,057 | 5,140 / 3,999 ² | 43,193 | 3.3 | 385.1 | 385.1 | 385.6 | 0.5 | | AB | 241,866 | 4,265 / 0 ² | 33,886 | 4.3 | 392.6 | 392.6 | 393.3 | 0.7 | | AC | 244,962 | 5,293 / 180 ² | 40,913 | 4.6 | 399.8 | 399.8 | 400.3 | 0.5 | | AD | 249,714 | 5,180 / 107 ² | 52,820 | 2.8 | 403.7 | 403.7 | 404.1 | 0.4 | | AE | 255,688 | 2,017 | 25,689 | 5.6 | 407.6 | 407.6 | 408.5 | 0.9 | | AF | 264,915 | 3,201 / 2,869 ² | 29,945 | 4.8 | 414.1 | 414.1 | 415 | 0.9 | | AG | 268,724 | 1,902 / 58 ² | 31,547 | 4.6 | 418.5 | 418.5 | 419 | 0.5 | | AH | 277,233 | 1,851 / 683 ² | 22,383 | 6.1 | 424.4 | 424.4 | 424.9 | 0.5 | Stream distance in feet above confluence with Guadalupe River ²Width/Width within Guadalupe County | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | | | | |-----|-------------------------------------|-----------------------------------|--|--|--| | BLE | GUADALUPE COUNTY, TEXAS | | | | | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: SAN MARCOS RIVER | | | | Table 24: Floodway Data, (continued) | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | RFACE | |------------------|-----------------------|---|-------------------------------|--------------------------------|--|---------------------|------------------|----------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | Al | 278,326 | 2,151 / 670 ² | 25,608 | 5.3 | 426.1 | 426.1 | 426.8 | 0.7 | | AJ | 282,667 | $2,151/670$ $2,358/707^2$ | 32,199 | 4.2 | 432.3 | 432.3 | 432.6 | 0.7 | | AK | 287,283 | 2,538 / 707
2,512 / 452 ² | 30,373 | 4.2 | 435.9 | 435.9 | 436.2 | 0.3 | | AL | 289,796 | 1,739 / 1,301 ² | 19,199 | 7.1 | 439.0 | 439.0 | 439.3 | 0.3 | | AM | 297,868 | 4,267 / 4,114 ² | 40,827 | 3.3 | 446.0 | 446.0 | 446.8 | 0.8 | | AN | 307,716 | 1,366 / 343 ² | 23,099 | 5.9 | 454.4 | 454.4 | 455.2 | 0.8 | | AO | ŕ | 2,319 / 183 ² | · | 5.4 | 468.3 | 468.3 | | 0.8 | | AP | 316,807 | 2,519 / 165
2,586 / 1,268 ² | 25,229 | 4.5 | 406.3
477.3 | 466.3
477.3 | 469.0
477.7 | 0.7 | | | 330,631 | 4,832 / 242 ² | 30,268 | | | | | | | AQ | 344,181 | , | 32,545 | 4.2 | 482.7 | 482.7 | 483.1 | 0.4 | | AR | 349,090 | 1,878 / 1,649 ² | 22,812 | 6.0 | 488.2 | 488.2 | 489.0 | 0.8 | | AS | 356,498 | 1,353 / 130 ² | 13,705 | 5.9 | 498.5 | 498.5 | 499.2 | 0.7 | | AT | 361,669 | 1,174 / 722 ² | 17,281 | 5.4 | 504.9 | 504.9 | 505.7 | 0.8 | | AU | 368,709 | 697 / 578 ² | 12,624 | 7.6 | 516.4 | 516.4 | 516.5 | 0.1 | | AV | 371,789 | 1,895 / 236 ² | 31,726 | 4.8 | 521.3 | 521.3 | 521.8 | 0.5 | | AW | 374,773 | 3,063 / 2,804 ² | 18,919 | 10.3 | 524.9 | 524.9 | 525.3 | 0.4 | | AX | 380,955 | 4,856 / 4,535 ² | 24,688 | 6.2 | 535.6 | 535.6 | 536.0 | 0.4 | | AY | 384,394 | 5,460 / 5,258 ² | 35,829 | 4.3 | 541.7 | 541.7 | 542.0 | 0.3 | | AZ | 387,804 | 4,298 / 2,564 ² | 29,992 | 5.1 | 545.0 | 545.0 | 545.2 | 0.2 | Stream distance in feet above confluence with Guadalupe River ²Width/Width within Guadalupe County | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|-----------------------------------| | BLE | GUADALUPE COUNTY, TEXAS | . 2002 | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: SAN MARCOS RIVER | Table 24: Floodway Data, (continued) | LOCA | LOCATION | | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |-----------------------------|--|---|--|---|--
--|--|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | | A B C D E F G H – J K L M N | 6,500
6,600
17,500
17,650
38,050
43,750
43,850
57,650
57,750
57,850
71,200
79,400
89,950
90,050 | 945 1,027 828 769 463 452 434 604 925 707 596 191 179 263 | 14,519
16,011
8,992
9,954
4,621
3,581
3,768
3,450
5,986
5,573
3,061
1,235
919
1,236 | 1.6
1.5
2.5
2.2
3.2
3.5
3.4
1.9
2.1
3.4
5.1
5.4
4.0 | 559.2
559.4
566.5
567.0
593.6
604.5
605.0
630.3
632.5
633.4
657.8
679.9
716.7
717.8 | 559.2
559.4
566.5
567.0
593.6
604.5
605.0
630.3
632.5
633.4
657.8
679.9
716.7
717.8 | 560.2
560.4
567.5
568.0
594.6
605.5
606.0
631.3
633.5
634.4
658.8
680.9
717.7
718.8 | 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | | ¹Stream distance in feet above mouth | T _A | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----------------|-------------------------------------|------------------------------------| | BLE | GUADALUPE COUNTY, TEXAS | 1 LOODWAL DALLA | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: SANTA CLARA CREEK | Table 24: Floodway Data, (continued) | LOCAT | LOCATION FLOODWAY | | 1% ANNUAL CHANCE FLOOD WATER SURFA
ELEVATION (FEET NAVD88) | | | RFACE | | | |------------------|--|--|---|---------------------------------|---|---|---|--------------------------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E | 13,150
13,250
13,350
17,650
22,700 | 392
562
934
411
100 ² | 1,946
3,911
1,222
2,087
367 | 3.1
1.6
0.8
2.4
4.5 | 629.7
632.4
634.3
643.2
670.6 | 629.7
632.4
634.3
643.2
670.6 | 630.7
633.4
635.3
644.2
671.6 | 1.0
1.0
1.0
1.0 | | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|---| | BLE | GUADALUPE COUNTY, TEXAS | 1 2005 11/11 | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: SANTA CLARA CREEK TRIBUTARY NO.1 | ¹Stream distance in feet above mouth ²Discharge Contained Within the Channel Table 24: Floodway Data, (continued) | LOCA | TION | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88) | | | | |------------------|-----------------------|-----------------|-------------------------------|--------------------------------|--|---------------------|------------------|----------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | А | 4,000 | 157 | 812 | 5.1 | 665.6 | 665.6 | 666.6 | 1.0 | | | | | | | | | | | ¹Stream distance in feet above mouth | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|---| | BLE | GUADALUPE COUNTY, TEXAS | 1 LOODWAL DALLA | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: SANTA CLARA CREEK TRIBUTARY NO.2 | Table 24: Floodway Data, (continued) | LOCAT | ION | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |---------------------------------|--|--|--|--|--|--|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H I J K L M N O P | 24,865
25,795
26,703
27,017
27,927
28,050
28,530
29,542
31,287
32,192
32,883
32,939
33,981
34,887
35,846
37,273 | 860
850
701
935
1,040
1,110
1,700
575
1,004
1,037
385
345
500
615
670
505 | 6,017
4,925
3,571
8,570
9,066
10,238
12,147
3,937
3,620
3,635
1,804
2,336
1,904
1,734
2,140
1,153 | 2.5
3.1
4.2
1.8
1.7
1.5
1.2
3.8
4.2
4.2
5.4
5.3
3.9
4.3
3.5
7.1 | 681.7
685.4
686.9
693.0
693.7
695.5
695.7
697.0
701.0
706.4
708.8
710.5
714.6
720.1
725.2
734.0 | 681.7
685.4
686.9
693.0
693.7
695.5
695.7
697.0
701.0
706.4
708.8
710.5
714.6
720.1
725.2
734.0 | 682.7
686.2
687.9
694.0
694.6
696.5
696.6
697.6
701.8
706.7
709.3
710.9
715.1
720.1
726.1
734.1 | 1.0
0.8
1.0
1.0
0.9
1.0
0.9
0.6
0.8
0.3
0.5
0.4
0.5
0.0 | | Q
R | 37,588
38,952 | 450
505 | 2,051
2,105 | 2.9
2.9 | 735.9
739.3 | 735.9
739.3 | 736.5
740.2 | 0.6
0.9 | ¹Stream distance in feet above mouth | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|-----------------------------| | BLE | GUADALUPE COUNTY, TEXAS | . 200211711 271171 | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: TOWN CREEK | Table 24: Floodway Data, (continued) | LOCAT | TION | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |---|--|---|---|--|--|--|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | S
T
U
V
X
Y
Z
AA
AB
AC
AD
AE
AF | 40,607
41,848
42,697
42,925
44,024
44,956
45,646
46,447
46,874
47,497
47,884
47,937
48,216
50,024 | 480
550
480
320
235
335
270
130
115
145
130
205
165
48 | 1,863 2,007 1,439 1,231 950 1,286 969 426 323 316 266 562 232 143 | 3.2
3.0
3.0
3.5
4.6
3.4
4.5
3.3
4.4
4.4
5.3
2.5
6.1
9.8 | 745.6
752.3
756.1
757.6
762.9
766.1
770.2
774.9
776.9
781.2
786.8
790.3
791.9
814.1 | 745.6
752.3
756.1
757.6
762.9
766.1
770.2
774.9
776.9
781.2
786.8
790.3
791.9
814.1 | 746.3
752.6
756.5
757.8
763.4
766.8
770.5
775.3
777.4
781.9
786.8
790.4
792.8
814.1 | 0.7
0.3
0.4
0.2
0.5
0.7
0.3
0.4
0.5
0.7
0.0
0.1
0.9
0.0 | ¹Stream distance in feet above mouth | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----|-------------------------------------|-----------------------------| | | GUADALUPE COUNTY, TEXAS | | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: TOWN CREEK | Table 24: Floodway Data, (continued) | LOCAT | ΓΙΟΝ | FLOODWAY | | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |------------------|-------------------------|-------------------|-------------------------------|--------------------------------|---|-------------------------|-------------------------|-------------------| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) |
SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C | 3,475
3,884
4,114 | 338
311
313 | 1,936
1,249
1,239 | 4.1
6.4
6.4 | 709.5
710.6
712.5 | 709.5
710.6
712.5 | 710.4
711.5
713.0 | 0.9
0.9
0.5 | ¹Stream distance in feet above confluence with Town Creek | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|--| | BLE | GUADALUPE COUNTY, TEXAS | 1 2005 1171 | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: TOWN CREEK TRIBUTARY NO.1 | **Table 24: Floodway Data, (continued)** | LOCAT | ION | | FLOODWAY | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |-----------------------------------|--|---|---|--|--|---|---|---| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | A B C D E F G H I J K L M N O P Q | 989 2,025 2,680 3,895 5,014 6,059 7,191 8,857 10,191 11,549 13,214 14,195 15,262 16,536 17,929 19,419 20,389 | 189
87
78
80
37
115
170
189
172
190
310
400
600
800
257
336
384 | 1,249
763
733
365
507
1,504
1,139
1,078
797
1,075
2,307
1,847
2,301
4,374
1,652
4,015
2,416 | 4.6
7.5
7.8
5.3
11.3
3.7
4.9
5.1
6.9
5.0
2.3
2.9
2.4
1.2
3.2
1.2
2.0 | 492.3
492.3
492.3
500.5
511.9
513.5
521.6
525.5
529.4
535.9
536.6
537.7
544.8
546.2
546.6
547.1 | 473.0 ² 480.1 ² 483.5 ² 484.7 ² 500.5 511.9 513.5 521.6 525.5 529.4 535.9 536.6 537.7 544.8 546.2 546.6 547.1 | 473.3
480.1
483.6
484.7
500.5
512.6
514.4
522.2
525.7
530.4
536.9
537.5
538.3
545.2
546.5
547.1
547.7 | 0.3
0.0
0.1
0.0
0.0
0.7
0.9
0.6
0.2
1.0
1.0
0.9
0.6
0.4
0.3
0.5
0.6 | ¹Stream distance in feet above confluence with Guadalupe River ²Elevation Computed Without Consideration of Backwater Effects FEDERAL EMERGENCY MANAGEMENT AGENCY TABLE 24 **FLOODWAY DATA GUADALUPE COUNTY, TEXAS** FLOODING SOURCE: WALNUT BRANCH **AND INCORPORATED AREAS** Table 24: Floodway Data, (continued) | LOCAT | ION | | FLOODWAY | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |-------------------|---|---|---|---|---|---|---|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | ABCDEFGHIJKLMXOPQ | 6,200
12,700
16,750
16,950
20,200
24,350
27,550
31,350
35,550
35,700
38,000
43,200
47,600
51,800
52,850
52,950
55,900 | 1,093
1,929
756
1,201
1,397
1,579
2,844
1,329
1,407
1,239
1,414
1,368
1,006
432
633
610
565 | 16,891
14,875
8,638
12,445
11,778
13,059
15,653
10,630
10,521
11,426
10,583
9,962
8,839
5,103
6,181
5,884
5,639 | 1.7
1.9
3.0
2.1
2.2
2.0
1.6
2.4
2.4
2.2
2.3
2.4
2.7
4.0
3.2
3.4
3.5 | * 420.5 423.0 424.1 425.6 427.6 429.4 432.3 436.1 436.6 438.4 443.9 449.5 456.5 457.1 457.8 462.8 | 418.3
420.5
423.0
424.1
425.6
427.6
429.4
432.3
436.1
436.6
438.4
443.9
449.5
456.5
457.1
457.8
462.8 | 419.3
421.5
424.0
425.1
426.6
428.6
430.4
433.3
437.1
437.6
439.4
444.9
450.5
457.5
458.1
458.8
463.8 | 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | | R | 56,250 | 1,093 | 8,933 | 2.2 | 463.0 | 463.0 | 464.0 | 1.0 | ¹Stream distance in feet above mouth | TA | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |-----|-------------------------------------|-----------------------------| | BLE | GUADALUPE COUNTY, TEXAS | . 2002 | | 24 | AND INCORPORATED AREAS | FLOODING SOURCE: YORK CREEK | ^{*}Data Not Available Table 24: Floodway Data, (continued) | LOCAT | ION | | FLOODWAY | | 1% ANNUAL CHANCE FLOOD WATER SURFACE
ELEVATION (FEET NAVD88) | | | | |---|---|--|--|--|--|--|--|--| | CROSS
SECTION | DISTANCE ¹ | WIDTH
(FEET) | SECTION
AREA
(SQ. FEET) | MEAN
VELOCITY
(FEET/SEC) | REGULATORY | WITHOUT
FLOODWAY | WITH
FLOODWAY | INCREASE | | S T U V W X Y Z AA AB AC AD AE AF AG AH | 56,350
58,800
63,750
70,100
70,200
76,400
84,000
85,350
85,550
91,500
99,900
100,550
100,650
103,650
106,300
108,500 | 1,075
902
1,503
752
809
1,011
523
717
712
1,144
808
1,019
980
1,070
898
429 | 8,417
6,957
7,544
5,845
6,588
7,234
4,319
5,823
5,139
5,894
5,084
6,457
5,706
5,662
4,174
3,279 | 2.3
2.8
2.5
1.8
2.5
2.4
3.8
2.8
3.1
2.7
2.8
2.2
2.4
2.4
2.6
3.7 | 463.7
467.0
473.5
482.1
482.7
490.8
500.9
502.2
502.3
512.4
526.6
527.4
527.9
533.4
538.6
544.5 | 463.7
467.0
473.5
482.1
482.7
490.8
500.9
502.2
502.3
512.4
526.6
527.4
527.9
533.4
538.6
544.5 | 464.7
468.0
474.5
483.1
483.7
491.8
501.9
503.2
503.3
513.4
527.6
528.4
528.9
534.4
539.6
545.5 | 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | ¹Stream distance in feet above mouth | TABLE 24 | FEDERAL EMERGENCY MANAGEMENT AGENCY | FLOODWAY DATA | |----------|-------------------------------------|-----------------------------| | | GUADALUPE COUNTY, TEXAS | | | | AND INCORPORATED AREAS | FLOODING SOURCE: YORK CREEK |